科目: 来源: 题型:
【题目】如图,在 Rt△AOB 中,∠AOB=90°,OA=3,OB=4,线段 OA’绕点 O 顺时针旋转ɑ角(0≤ɑ≤180°),OA’交边 AB 于点 F.
(1)当旋转ɑ角度后,A’点恰好落在 AB 上,记为 C 点,求 CB 的长度;
(2)当 OA’绕点 O 旋转与 AB 平行时,记为 OG,连接 CG,交 OB 于 E,分别求出 OE 长度和∠COB 的正弦值;
(3)在旋转过程中,请直接写出的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与反比例函数在第一象限内的图象相交于点.
(1)求反比例函数的解析式;
(2)将直线向上平移后与反比例函数图象在第一象限内交于点,与轴交于点,且的面积为,求直线的解析式.
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读理解:
给定一个矩形,如果存在另一个矩形,它的周长和面积分别是已知矩形的周长和面积的 2 倍,则这个矩形是给定矩形的“加倍”矩形.如图,矩形 A1B1C1D1是矩形 ABCD 的“加倍”矩形.请你解决下列问题:
(1)边长为 a 的正方形存在“加倍”正方形吗?如果存在,求出“加倍”正方形的边长;如果不存在,说明理由.
(2)当矩形的长和宽分别为 m,n 时,它是否存在“加倍”矩形?请作出判断,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在ABCD 中,E 是 DC 上一点,连接 AE.F 为 AE 上一点,且∠BFE=∠C.
(1)求证:△ABF∽△EAD.
(2)已知 AF=2,FE=3,AB=4,求 DE 的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了解学生身高,某校随机抽取了25位同学的身高,按照身高分为:A,B,C,D,E五个小组,并绘制了如下的统计图,其中每组数据均包含最小值,不包含最大值.
请结合统计图,解决下列问题:
(1)这组数据的中位数落在_____组;
(2)根据各小组的组中值,估计该校同学的平均身高;
(3)小明认为在题(2)的计算中,将D,E两组的组中值分别用1.70m和1.90m进行替换,并不影响计算结果.他的想法正确吗?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=____.(结果保留根号)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC 中,点 D 为边 BC 的点,点 E、F 分别是边 AB、AC 上两点,且 EF∥BC,若 AE:EB=m,BD:DC=n,则( )
A.若 m>1,n>1,则 2S△AEF>S△ABDB.若 m>1,n<1,则 2S△AEF<S△ABD
C.若 m<1,n<1,则 2S△AEF<S△ABDD.若 m<1,n>1,则 2S△AEF<S△ABD
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=x2经过点A(x1,y1)、C(x2,y2),其中x1、x2是方程x2﹣2x﹣8=0的两根,且x1<x2,过点A的直线l与抛物线只有一个公共点
(1)求A、C两点的坐标;
(2)求直线l的解析式;
(3)如图2,点B是线段AC上的动点,若过点B作y轴的平行线BE与直线l相交于点E,与抛物线相交于点D,过点E作DC的平行线EF与直线AC相交于点F,求BF的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,∠MBN=90°,点C是∠MBN平分线上的一点,过点C分别作AC⊥BC,CE⊥BN,垂足分别为点C,E,AC=,点P为线段BE上的一点(点P不与点B、E重合),连接CP,以CP为直角边,点P为直角顶点,作等腰直角三角形CPD,点D落在BC左侧.
(1)求证:;
(2)连接BD,请你判断AC与BD的位置关系,并说明理由;
(3)设PE=x,△PBD的面积为S,求S与x之间的函数关系式.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB是⊙O的直径,点C是⊙O上一点,点D是OB的中点,过点D作AB的垂线交AC的延长线于点F,过点C作⊙O的切线交FD于点E.
(1)求证:CE=EF;
(2)如果sin∠F=,EF=5,求AB的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com