科目: 来源: 题型:
【题目】如图,AB为半圆O的直径,点C在半圆O上,AB=8,∠CAB=60°,P是弧上的一个点,连接AP,过点C作CD⊥AP于点D,连接BD,在点P移动过程中,BD长的最小值为_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=4,BC=3,P是AC上的一点,PH⊥AB于点H,以PH为直径作⊙O,当CH与PB的交点落在⊙O上时,AP的值为( )
A.B.C.2D.3
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在⊙O中,弦AB、CD相交于点E,且AB=CD,∠BED=α(0°<α<180°).有下列结论:①∠BOD=α,②∠OAB=90°﹣α,③∠ABC=.其中一定成立的个数为( )
A.3个B.2个C.1个D.0个
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线与轴相交于,两点,顶点在第一象限,点在该抛物线上.
(1)若点坐标为.
①求与的函数关系式;
②已知两点,,当抛物线与线段没有交点时,求的取值范围;
(2)若点在该抛物线的曲线段上(不与点,重合),直线交轴于点,过点作轴于点,连接,.求证:.
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读理解 在研究函数的图象性质时,我们用“描点”的方法画出函数的图象.
列出表示几组与的对应值:
描点连线:以表中各对对应值为坐标,描出各点,并用平滑的曲线顺次连接这些点,就得到函数的图象,如图1:
图1
可以看出,这个函数图象的两个分支分别在第一、二象限,且当时,与函数在第一象限的图象相同;当时,与函数在第二象限的图象相同.类似地,我们把函数(是常数,)的图象称为“并进双曲线”.
认真观察图表,分别写出“并进双曲线”的对称性、函数的增减性性质:
①图象的对称性性质: ;
②函数的增减性性质: ;
延伸探究如图2,点M,N分别在“并进双曲线”的两个分支上,,判断与的数量关系,并说明理由.
图2
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在中,,,,动点从点出发,以每秒个单位长度的速度沿着方向向点运动,动点从点出发,以每秒个单位长度的速度沿着方向向点运动,如果,两点同时出发,当到达点处时,两点都停止运动.设运动的时间为秒,的面积为.
(1)用含的代数式表示:
, , ;
(2)求的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=ax2﹣4ax﹣(a≠0)交x轴于A、B两点,交y轴于点C,这条抛物线的顶点为D.
(1)求点D的坐标.
(2)过点C作CE∥x轴交抛物线于点E.当CE=2AB时,求点D的坐标.
(3)这条抛物线与直线y=﹣x相交,其中一个交点的横坐标为﹣1.过点P(m,0)作x轴的垂线,交这条抛物线于点M,交直线y=﹣x于点N,且点M在点N的下方.当线段MN的长度随m的增大而增大时,求m的取值范围.
(4)点Q在这条抛物线上运动,若在这条抛物线上只存在两个点Q,满足S△ABQ=3S△ABC,直接写出a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AB=AC=5,CD⊥AB于点D,CD=3.点P从点A出发沿线段AC以每秒1个单位的速度向终点C运动.过点P作PQ∥AB交BC于点Q,过点P作AC的垂线,过点Q作AC的平行线,两线交于点E.设点P的运动时间为t秒.
(1)求线段PQ的长.(用含t的代数式表示)
(2)当点E落在边AB上时,求t的值.
(3)当△PQE与△ACD重叠部分图形是四边形时,直接写出t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com