科目: 来源: 题型:
【题目】计算下列各题
某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元,设矩形一边长为,面积为平方米.
(1)求与之间的函数关系式,并写出自变量的取值范围;
(2)设计费能可以达到30000元吗?为什么?
(3)当是多少米时,设计费最多?最多是多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,已知抛物线与轴交于点和点,与轴交于点.
(l)求抛物线的表达式;
(2)如图l,若点为第二象限抛物线上一动点,连接,求四边形面积的最大值,并求此时点的坐标;
(3)如图2,在轴上是否存在一点使得为等腰三角形?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】一艘货轮由西向东航行,在处测得灯塔在它的北偏东60°方向,继续航行到达处,测得灯塔在正南方向10海里的处是港口,点、、在一条直线上,则这艘货轮由处到处航行的路程为__________海里(结果保留根号).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图, 抛物线与轴交于点A(-1,0),顶点坐标(1,n)与轴的交点在(0,2),(0,3)之间(包 含端点),则下列结论:①;②;③对于任意实数m,总成立;④关于的方程有两个不相等的实数根.其中结论正确的个数为
A. 1 个 B. 2 个 C. 3 个 D. 4 个
查看答案和解析>>
科目: 来源: 题型:
【题目】定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差y-x称为P点的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”
(1)①点A(1,3) 的“坐标差”为 。
②抛物线y=-x2+3x+3的“特征值”为 。
(2)某二次函数y=-x2+bx+c(c≠0) 的“特征值”为1,点B(m,0)与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等。
①直接写出m= (用含c的式子表示)
②求此二次函数的表达式。
(3)如图,在平面直角坐标系xOy中,以M(2,3)为圆心,2为半径的圆与直线y=x相交于点D、E请直接写出⊙M的“特征值”为 。
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a (a<0)经过点A(-1,0),将点B(0,4)向右平移5个单位长度,得到点C.
(1)求点C的坐标;
(2)求抛物线的对称轴;
(3)若抛物线与线段BC恰有一个公共点,结合函数图像,求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,⊙O的切线DE交AC于点E.
(1)求证:E是AC中点;
(2)若AB=10,BC=6,连接CD,OE,交点为F,求OF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com