相关习题
 0  364755  364763  364769  364773  364779  364781  364785  364791  364793  364799  364805  364809  364811  364815  364821  364823  364829  364833  364835  364839  364841  364845  364847  364849  364850  364851  364853  364854  364855  364857  364859  364863  364865  364869  364871  364875  364881  364883  364889  364893  364895  364899  364905  364911  364913  364919  364923  364925  364931  364935  364941  364949  366461 

科目: 来源: 题型:

【题目】对于一个函数,自变量时,函数值也等于,则称是这个函数的不动点.

已知二次函数.

1)若3是此函数的不动点,则的值为__________.

2)若此函数有两个相异的不动点,且,则的取值范围为__________.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,经过矩形的顶点,且与相交于点在圆心同侧.已知.

1的长为__________.

2)若的半径长为,则________.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在中,直径垂直弦于点,且.上一点(点不与点重合),连结.过点于点.给出下列结论:是等边三角形;②在点的运动过程中,的值始终等于.则下列说法正确的是(

A.①,②都对B.①对,②错C.①错,②对D.①,②都错

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在中,,点重心,连结并延长交于点;连结并延长交于点,过点于点.的面积为8,则的面积为(

A.4B.2C.1D.

查看答案和解析>>

科目: 来源: 题型:

【题目】对于给定函数ya1x2+b1x+c1(其中a1b1c1为常数,且a1≠0),则称函数ya1a2b1+b20c1+c20)为函数ya1x2+b1x+c1(其中a1b1c1为常数,且a1≠0)的相关函数,此相关函数的图象记为G

1)已知函数y=﹣x2+4x+2

①直接写出这个函数的相关函数

②若点Pa1)在相关函数的图象上,求a的值;

③若直线ym与图象G恰好有两个公共点,直接写出m的取值范围;

2)设函数y=﹣x2+nx+1n0)的相关函数的图象G在﹣4≤x≤2上的最高点的纵坐标为y0,当y0≤9时,直接写出n的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线yax2+bx+c经过点A0,﹣3)、B(﹣10)、C2,﹣3),抛物线与x轴的另一交点为点E,点P为抛物线上一动点,设点P的横坐标为t

1)求抛物线的解析式;

2)若点P在第一象限,点M为抛物线对称轴上一点,当四边形MBEP恰好是平行四边形时,求点P的坐标;

3)若点P在第四象限,连结PAPEAE,当t为何值时,PAE的面积最大?最大面积是多少?

4)是否存在点P,使PAE为以AE为直角边的直角三角形,若存在,直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标表示科技馆从8:30开门后经过的时间分钟,纵坐标表示到达科技馆的总人数.图中曲线对应的函数解析式为,10:00之后来的游客较少可忽略不计.

1请写出图中曲线对应的函数解析式;

2为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知AB是⊙O的直径,点D在⊙O上,∠DAB45°BCADCDAB

1)判断直线CD与⊙O的位置关系,并说明理由;

2)若⊙O的半径为1,求图中阴影部分的周长.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知二次函数yax22ax2a≠0).

1)该二次函数图象的对称轴是直线   

2)若该二次函数的图象开口向上,当﹣1≤x≤5时,函数图象的最高点为M,最低点为N,点M的纵坐标为,求点M和点N的坐标;

3)若该二次函数的图象开口向下,对于该二次函数图象上的两点Ax1y1)、Bx2y2),当x2≥3时,均有y1y2,请结合图象,直接写出x1的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】为弘扬传统文化,某校开展了传承经典文化,阅读经典名著活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:

收集数据:

七年级:7985738075768770759475798171758086598377

八年级:9274878272819483778380817181727782807041

整理数据:

七年级

0

1

0

a

7

1

八年级

1

0

0

7

b

2

分析数据:

平均数

众数

中位数

七年级

78

75

八年级

78

80.5

应用数据:

(1)由上表填空:a= b= c= d=

(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?

(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.

查看答案和解析>>

同步练习册答案