科目: 来源: 题型:
【题目】如图,抛物线
经过
,
两点,与y轴交于点C,连接AB,AC,BC.
![]()
求抛物线的表达式;
求证:AB平分
;
抛物线的对称轴上是否存在点M,使得
是以AB为直角边的直角三角形,若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E,若AB=6,
(1)BC=_____;
(2)△AEC的面积为_____.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,D为AC中点,P为AB上的动点,将P绕点D逆时针旋转90°得到P′,连CP′的最小值为( )
![]()
A.1.6B.2.4C.2D.2![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点A在点(﹣3,0)和点(﹣2,0)之间,其部分图象如图所示,则下列结论:①b2﹣4ac<0;②当x>﹣1时,y随x的增大而减小;③a+b+c<0;④若方程ax2+bx+c﹣m=0没有实数根,则m>2;⑤3a+c<0,其中正确结论的个数是( )
![]()
A.2 个B.3 个C.4 个D.5 个
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在
中,
, 点
是
边上一点,连接
,以
为边作等边
.
如图1,若
求等边
的边长;
![]()
如图2,点
在
边上移动过程中,连接
,取
的中点
,连接
,过点
作
于点
.
![]()
①求证:
;
②如图3,将
沿
翻折得
,连接
,直接写出
的最小值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】实行垃圾分类和垃圾资源化利用,关系广大人民群众生活环境,关系节约使用资源,也是社会文明水平的一个重要体现.某环保公司研发了甲、乙两种智能设备,可利用最新技术将干垃圾进行分选破碎制成固化成型燃料棒,干垃圾由此变身新型清洁燃料.某垃圾处理厂从环保公司购入以上两种智能设备若干,已知购买甲型智能设备花费
万元,购买乙型智能设备花费
万元,购买的两种设备数量相同,且两种智能设备的单价和为
万元.
求甲、乙两种智能设备单价;
垃圾处理厂利用智能设备生产燃料棒,并将产品出售.已知燃料棒的成本由人力成本和物资成本两部分组成,其中物资成本占总成本的
,且生产每吨燃料棒所需人力成本比物资成本的倍
还多
元.调查发现,若燃料棒售价为每吨
元,平均每天可售出
吨,而当销售价每降低
元,平均每天可多售出
吨.垃圾处理厂想使这种燃料棒的销售利润平均每天达到
元,且保证售价在每吨
元基础上降价幅度不超过
,求每吨燃料棒售价应为多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,
是线段
上--动点,以
为直径作半圆,过点
作
交半圆于点
,连接
.已知
,设
两点间的距离为
,
的面积为
.(当点
与点
或点
重合时,
的值为
)请根据学习函数的经验,对函数
随自变量
的变化而变化的规律进行探究. (注: 本题所有数值均保留一位小数)
通过画图、测量、计算,得到了
与
的几组值,如下表:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
补全表格中的数值:
;
;
.
根据表中数值,继续描出
中剩余的三个点
,画出该函数的图象并写出这个函数的一条性质;
结合函数图象,直接写出当
的面积等于
时,
的长度约为___ _
.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】一个四位数,记千位数字与个位数字之和为
,十位数字与百位数字之和为
,如果
,那么称这个四位数为“对称数”
最小的“对称数”为 ;四位数
与
之和为最大的“对称数”,则
的值为 ;
一个四位的“对称数”
,它的百位数字是千位数字
的
倍,个位数字与十位数字之和为
,且千位数字
使得不等式组
恰有
个整数解,求出所有满足条件的“对称数”
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com