相关习题
 0  365775  365783  365789  365793  365799  365801  365805  365811  365813  365819  365825  365829  365831  365835  365841  365843  365849  365853  365855  365859  365861  365865  365867  365869  365870  365871  365873  365874  365875  365877  365879  365883  365885  365889  365891  365895  365901  365903  365909  365913  365915  365919  365925  365931  365933  365939  365943  365945  365951  365955  365961  365969  366461 

科目: 来源: 题型:

【题目】如图,已知二次函数的图象过点O00).A84),与x轴交于另一点B,且对称轴是直线x3

1)求该二次函数的解析式;

2)若MOB上的一点,作MNABOAN,当ANM面积最大时,求M的坐标;

3Px轴上的点,过PPQx轴与抛物线交于Q.过AACx轴于C,当以OPQ为顶点的三角形与以OAC为顶点的三角形相似时,求P点的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中抛物线y=﹣x2+bx+c经过点ABC,已知A(﹣10),C03).

1)求抛物线的表达式;

2)如图,P为线段BC上一点,过点Py轴平行线,交抛物线于点D,当BCD的面积最大时,求点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,在平面直角坐标系中,直线x轴、y轴分别交于点A和点B0-1),抛物线经过点B,且与直线l的另一个交点为C4n).

1)求n的值和抛物线的解析式;

2)点D在抛物线上,且点D的横坐标为t0<t<4),DEy轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求pt的函数关系式以及p的最大值;

3M是平面内一点,将AOB绕点M沿逆时针方向旋转90°后,得到A'O'B',点AOB的对应点分别是点A'O'B' A'O'B'的两个顶点恰好落在抛物线上,请直接写出点A的横坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线 y=﹣x2+bx+c x 轴交于 AB 两点,与 y 轴交于点 C ,点 A 的坐标为(-10),点 C 的坐标为(03),点D和点 C 关于抛物线的对称轴对称,直线 AD y 轴交于点 E

1)求抛物线的解析式;

2)如图,直线 AD 上方的抛物线上有一点 F,过点 F FGAD 于点 G,作 FH 平行于 x 轴交直线 AD 于点 H,求FGH 周长的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线yax2+bx1a≠0)交x轴于AB10)两点,交y轴于点C,一次函数yx+3的图象交坐标轴于AD两点,E为直线AD上一点,作EFx轴,交抛物线于点F

1)求抛物线的解析式;

2)若点F位于直线AD的下方,请问线段EF是否有最大值?若有,求出最大值并求出点E的坐标;若没有,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在菱形ABCD中,AB2,∠BAD120°,点EF分别是边ABBC边上的动点,沿EF折叠BEF,使点B的对应点B’始终落在边CD上,则AE两点之间的最大距离为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,将矩形MNPQ放置在矩形ABCD中,使点MN分别在ABAD边上滑动,若MN=6PN=4,在滑动过程中,点A与点P的距离AP的最大值为(  )

A. 4 B. 2 C. 7 D. 8

查看答案和解析>>

科目: 来源: 题型:

【题目】抛物线经过ABC三点.

(1)求抛物线的解析式。

(2)若点M为第三象限内抛物线上一动点,点M的横坐标为mAMB的面积为S.求S关于m的函数关系式,并求出S的最大值.

(3)若点P是抛物线上的动点,点Q是直线上的动点,判断有几个位置能够使得点PQBO为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知△ABC是等边三角形,以AB为直径作⊙O,交BC边于点D,交AC边于点F,作DE⊥AC于点E

1)求证:DE⊙O的切线;

2)若△ABC的边长为4,求EF的长度.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC和△ADE中,AB=AC,AD=AE,BAC+EAD=180°,ABC不动,△ADE绕点A旋转,连接BE,CD,FBE的中点,连接AF.

(1)如图①,当∠BAE=90°时,求证:CD=2AF;

(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.

查看答案和解析>>

同步练习册答案