科目: 来源: 题型:
【题目】△ABC中,∠ACB=90°,AC=BC,D是BC上一点,连接AD,将线段AD绕着点A逆时针旋转,使点D的对应点E在BC的延长线上。过点E作EF⊥AD垂足为点G,
(1)求证:FE=AE;
(2)填空:=__________
(3)若,求
的值(用含k的代数式表示).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在矩形ABCD中,AB=10,动点E、F分别在边AB、AD上,且AF=AE.将△AEF绕点E顺时针旋转90°得到△A'EF',设AE=x,△A'EF'与矩形ABCD重叠部分面积为S,S的最大值为9.
(1)求AD的长;
(2)求S关于x的函数解析式,并写出自变量x的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,∠AOB=90°,AB∥x轴,OA=2,双曲线经过点A.将△AOB绕点A顺时针旋转,使点O的对应点D落在x轴的负半轴上,若AB的对应线段AC恰好经过点O.
(1)求点A的坐标和双曲线的解析式;
(2)判断点C是否在双曲线上,并说明理由
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线与x轴相交于A,B两点,与y轴相交于点C.点D是直线AC上方抛物线上一点,过点D作y轴的平行线,与直线AC相交于点E.
(1)求直线AC的解析式;
(2)当线段DE的长度最大时,求点D的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.
(1)用画树状图法或列表法分析这两辆汽车行驶方向所有可能的结果;
(2)求一辆车向右转,一辆车向左转的概率;
(3)求至少有一辆车直行的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,一条抛物线与x轴相交于A、B两点(点A在点B的左侧),其顶点P在线段MN上移动.若点M、N的坐标分别为(-1,-1)、(2,-1),点B的横坐标的最大值为3,则点A的横坐标的最小值为( )
A.-3B.-2.5C.-2D.-1.5
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C,点O为坐标原点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,点D为直线AE上方抛物线上的一点
(1)求抛物线所对应的函数解析式;
(2)求△ADE面积的最大值和此时点D的坐标;
(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某商家经销一种绿茶,用于装修门面已投资4000元已知绿茶每千克成本40元,经研究发现销量y(kg)与销售单价x(元/kg)之间的函数关系是(
).以该绿茶的月销售利润为w(元)[销售利润
(每千克单价
每千克成本)
销售量]
(1)求m与之间的函数关系式,并求出x为何值时,w的值最大?
(2)若在第一个月里,按使w获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于85元,要想在全部收回投资的基础上使第二个月的利润达到2200元,那么第二个月里应该确定销售单价为多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC为等边三角形,将一个直角三角形60°角的顶点与点C重合,再将三角形绕点C按顺时针方向旋转(旋转角大于0°且小于30°).旋转后三角形的一直角边与AB交于点D,在直角三角形斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接EF.
(1)求∠EAF的度数;
(2)DE与EF相等吗?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,正方形ECFD各顶点在Rt△ABC的边上,观察图形,并回答下列问题:
(1)请你说明由图(1)变换到图(2)的过程;
(2)若AD=3,△AED与△BDF的面积和为9,求线段BD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com