科目: 来源: 题型:
【题目】已知⊙O.如图,
(1)作⊙O的直径AB;
(2)以点A为圆心,AO长为半径画弧,交⊙O于C,D两点;
(3)连接CD交AB于点E,连接AC,BC.
根据以上作图过程及所作图形,有下面三个推断:
①CE=DE; ②BE=3AE; ③BC=2CE.
所有正确推断的序号是_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点,抛物线与轴从左到右的交点为,.
(1)若抛物线经过点,求抛物线的解析式和顶点坐标;
(2)当时,求的值;
(3)直线经过点,与轴交于点,
①求点的坐标;
②若线段与抛物线有唯一公共点,直接写出正整数的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,一段铁路的示意图,段和段都是高架桥,段是隧道.已知,,,在段高架桥上有一盏吊灯,当火车驶过时,灯光可垂直照射到车身上,已知火车甲沿方向匀速行驶,当火车甲经过吊灯时,灯光照射到火车甲上的时间是,火车甲通过隧道的时间是,如果从车尾经过点时开始计时,设行驶的时间为,车头与点的距离是.
(1)火车甲的速度和火车甲的长度
(2)求关于的函数解析式(写出的取值范围),并求当为何值时,车头差米到达点.
(3)若长度相等的火车乙以相同的速度沿方向行驶,且火车甲乙不在隧道内会车(会车时两车均不在隧道内),火车甲先进隧道,当火车甲的车头到达点时,火车乙的车头能否到达点?若能到达,至多驶过地点多少?若不能到达,至少距离点多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】把正整数,,,,排成如下的一个数表.
(1)在第_____行,第______列;
(2)第行第列的数是_______(用含“”的代数式表示)
(3)嘉嘉和淇淇玩数学游戏,嘉嘉对淇淇说:“你从数表中挑一个数,按如图所示的程序计算,只要你告诉我所得的数在第几行,我就知道你挑的数在第几行.”你认为嘉嘉说得有道理吗?计算说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】有个填写运算符号的游戏:在“”中的每个内,填入,,,中的某一个(可重复使用),然后计算结果.
(1)计算:;
(2)若,请推算内的符号;
(3)在“”的内填入符号后,使计算所得数最小,直接写出这个最小数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,菱形中,对角线、相交于点,,,动点从点出发,沿线段以的速度向点运动,同时动点从点出发,沿线段以支向点运动,当其中一个动点停止时另一个动点也随之停止,设运动时间为(单位:)(),以点为圆心,长为半径的⊙M与射线、线段分别交于点、,连接.
(1)求的长(用含有的代数式表示),并求出的取值范围;
(2)当为何值时,线段与⊙M相切?
(3)若⊙M与线段只有一个公共点,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】文具店有三种品牌的6个笔记本,价格是4,5,7(单位:元)三种,从中随机拿出一个本,已知(一次拿到7元本).
(1)求这6个本价格的众数.
(2)若琪琪已拿走一个7元本,嘉嘉准备从剩余5个本中随机拿一个本.
①所剩的5个本价格的中位数与原来6个本价格的中位数是否相同?并简要说明理由;
②嘉嘉先随机拿出一个本后不放回,之后又随机从剩余的本中拿一个本,用列表法求嘉嘉两次都拿到7元本的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知抛物线经过点,.
(1)求的值,并将抛物线解析式化成顶点式;
(2)已知点,点为抛物线上一动点.求证:以为圆心,为半径的圆与直线相切;
(3)在(2)的条件下,点为抛物线上一动点,作直线,与抛物线交于点.当时,请直接写出直线的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com