| A. | 存在α,使得BA′⊥面A′DE | B. | 存在α,使得BA′⊥面A′CD | ||
| C. | 存在α,使得EA′⊥面A′CD | D. | 存在α,使得EA′⊥面A′BC |
分析 Rt△ABE绕BE旋转的几何体是两个圆锥的组合体,能推导出某个位置存在母线A′E⊥AE,即A′E⊥BC,从而得到存在α,使得EA′⊥面A′BC.
解答
解:作AF⊥BE于F,交DC于G,则当折叠时,A′的投影在FG上
设正方形的边长为1,则A′B=1,BD=$\sqrt{2}$,
∵A′E+ED=1>A′D,
∴∠BA′D≠90°,故A和B错误;
∵二面角A′-BE-C的大小为α(0<α<π),不存在母线EA′⊥A′C,
∴不可能存在α,使得EA′⊥面A′CD,故C错误;
Rt△ABE绕BE旋转的几何体是两个圆锥的组合体,
∵∠A′BE<45°,45°<∠A′EB<90°,
∴某个位置存在母线A′E⊥AE,即A′E⊥BC,
∵二面角A′-BE-C的大小为α(0<α<π),
∴存在α,使得EA′⊥面A′BC,故D正确.
故选:D.
点评 本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 2 | C. | 2$\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com