精英家教网 > 高中数学 > 题目详情

通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:

 

总计

爱好

40

20

60

不爱好

20

30

50

总计

60

50

110

算得,

K2≈7.8.

附表:

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

参照附表,得到的正确结论是(  )

A.有99%以上的把握认为“爱好该项运动与性别有关”

B.有99%以上的把握认为“爱好该项运动与性别无关”

C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”

D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”

练习册系列答案
相关习题

科目:高中数学 来源: 题型:


 设f(n)是定义在N*上的增函数,f(4)=5,且满足:

①任意n∈N*,f(n) Z;②任意mn∈N*,有f(m)f(n)=f(mn)+f(mn-1).

(1)求f(1),f(2),f(3)的值;(2)求f(n)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:


设全集I=R,已知集合M= (1) 求(∁IM)∩N;

(2) 记集合A=(∁IM)∩N,已知集合B={x|a-1≤x≤5-a,a∈R},若B∪A=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:


 设α、β为两个不同的平面,直线lα,则“l⊥β”是“α⊥β”成立的________条件.

查看答案和解析>>

科目:高中数学 来源: 题型:


对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是(  )

A.0.09                         B.0.20

C.0.25                         D.0.45

查看答案和解析>>

科目:高中数学 来源: 题型:


中国共产党第十八次全国代表大会期间,某报刊媒体要选择两名记者去进行专题采访,现有记者编号分别为1,2,3,4,5的五名男记者和编号分别为6,7,8,9的四名女记者.要从这九名记者中一次随机选出两名,每名记者被选到的概率是相等的,用符号(xy)表示事件“抽到的两名记者的编号分别为xy,且xy”.

(1)共有多少个基本事件?并列举出来;

(2)求所抽取的两名记者的编号之和小于17但不小于11或都是男记者的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:


设抛物线Cy2=2px(p>0)的焦点为F,点MC上,|MF|=5.若以MF为直径的圆过点(0,2),则C的方程为(  )

A.y2=4xy2=8x               B.y2=2xy2=8x

C.y2=4xy2=16x               D.y2=2xy2=16x

查看答案和解析>>

科目:高中数学 来源: 题型:


首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为yx2-200x+80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.

(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?

(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?

查看答案和解析>>

科目:高中数学 来源: 题型:


 如果实数满足条件   则的最大值为

(A)                      (B)       

 (C)                       (D)

查看答案和解析>>

同步练习册答案