精英家教网 > 高中数学 > 题目详情
11.已知:$\left\{\begin{array}{l}{f(x)={x}^{2}-2x}\\{{x}_{0}∈[-1,2]}\end{array}\right.$,求f(x0)的值域.

分析 求出对称轴对称轴x0=1,判断出[-1,1]上单调递减,在[1,2]上单调递增,利用可求解最大值,最小值即可求解值域.

解答 解;∵f(x0)=x02-2x0,x0∈[-1,2]
∴对称轴x0=1,在[-1,1]上单调递减,在[1,2]上单调递增,
∵f(1)=-1,f(-1)=3,f(2)=0,
∴f(x0)的值域的值域为[-1,3].

点评 本题考查了二次函数在闭区间上的最值问题,关键是判断对称轴,得出单调性求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知数学、英语的成绩分别有优、良、及格、不及格四个档次,某班共60人,在每个档次的人数如表:
及格不及格
1311
1076
及格2409
不及格1b7a+4
(1)求数学及格且英语良的概率;
(2)在数学及格的条件下,英语良的概率;
(3)若数学良与英语不及格是相互独立的,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD的底面为矩形,AB=$\sqrt{2}$,BC=1,E,F分别是AB,PC的中点,DE⊥PA,求证:平面PAC⊥平面PDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若不等式0≥sin2x+mcosx-2对任意x∈[0,$\frac{1}{2}$π)恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知△ABC的三边长分别为AB=$\sqrt{{m}^{2}+{n}^{2}}$,AC=$\sqrt{{m}^{2}+{t}^{2}}$,BC=$\sqrt{{n}^{2}+{t}^{2}}$,其中m,n,t∈(0,+∞),则△ABC是(  )
A.直角三角形B.钝角三角形
C.锐角三角形D.以上三种情况都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.解不等式:|x-1|+|2x-4|≤5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设向量$\overrightarrow{a}$=($\sqrt{3}$sinx,sinx),$\overrightarrow{b}$=($\frac{\sqrt{6}}{2}$,$\frac{\sqrt{6}}{2}$),$\overrightarrow{c}$=(cosx,sinx),x∈[0,$\frac{π}{2}$]
(1)若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,求x的值
(2)设函数f(x)=$\overrightarrow{b}$•$\overrightarrow{c}$,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.把长度AB和宽AD分别为2$\sqrt{3}$和2的长方形ABCD沿对角线AC折成60°的二面角,则|$\overrightarrow{BD}$|等于$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=8,$\overrightarrow{a}$与$\overrightarrow{b}$夹角是120°.
(1)求$\overrightarrow{a}•\overrightarrow{b}$的值及|$\overrightarrow{a}+\overrightarrow{b}$|的值;
(2)当k为何值时,$(\overrightarrow{a}+2\overrightarrow{b})⊥(k\overrightarrow{a}-\overrightarrow{b})$?

查看答案和解析>>

同步练习册答案