ÒÑÖªF1ÊÇÍÖÔ²C1£º
y2
a2
+
x2
b2
=1£¨a£¾b£¾0£©ÓëÅ×ÎïÏßC2£ºx2=4y¹²Í¬µÄ½¹µã£¬MÊÇC1ÓëC2ÔÚµÚ¶þÏóÏ޵Ľ»µã£¬ÇÒ|MF1|=
5
3
£®
£¨1£©ÊÔÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©ÒÑÖªµãPÊÇÍÖÔ²C1Éϵ͝µã£¬GHÊÇÔ²x2+£¨y+1£©2=1µÄÖ±¾¶£¬ÊÔÇó
PG
PH
µÄ×î´óÖµ£»
£¨3£©ÓëÔ²x2+£¨y+1£©2=1ÏàÇеÄÖ±Ïßl£ºy=k£¨x+t£©£¨t¡Ù0£©½»ÍÖÔ²ÓÚA¡¢BÁ½µã£¬ÈôÍÖÔ²ÉϵĵãPÂú×ã
OA
+
OB
=¦Ë
OP
£¬ÇóʵÊý¦ËµÄȡֵ·¶Î§£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ,ÍÖÔ²µÄ±ê×¼·½³Ì
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÀûÓÃÅ×ÎïÏߵķ½³ÌºÍ¶¨Òå¼´¿ÉÇó³öµãMµÄ×ø±ê£¬ÔÙÀûÓÃÍÖÔ²µÄ¶¨Òå¼´¿ÉÇó³ö£»
£¨2£©¸ù¾ÝÖ±ÏßÓëÔ²ÏàÇÐÔòÔ²Ðĵ½Ö±Ïß¾àÀëµÈÓÚ°ë¾¶£¬¿ÉµÃk=
2t
1-t2
£¬ÁªÁ¢Ö±ÏßÓëÍÖÔ²·½³Ì£¬½áºÏÍÖÔ²ÉÏÒ»µãPÂú×ã
OA
OB
=¦Ë
OP
=(x1+x2£¬y1+y2)
£¬¿ÉµÃµ½¦Ë2µÄ±í´ïʽ£¬½ø¶øÇó³öʵÊý¦ËµÄȡֵ·¶Î§£®
½â´ð£º ½â£º£¨1£©ÓÉÒÑÖªF1£¨0£¬1£©£¬
¡àa2-b2=1£¬¢Ù
ÉèM£¨x0£¬y0£©£¬£¨x0£¼0£©£¬
Ôò|MF1|=y0+1=
5
3
£¬½âµÃy0=
2
3
£¬x02=4y0=
8
3
£¬
¡à
4
9a2
+
8
3b2
=1
£®¢Ú
ÓÉ¢Ù¢ÚµÃa2=4£¬b2=3£®
¹ÊÍÖÔ²µÄ·½³ÌΪ
x2
3
+
y2
4
=1
£®
£¨2£©ÓÉÌâÒ⣬Բ¹ýÔ­µã£¬ÉèG£¨x1£¬y1£©£¬H£¨x2£¬y2£©£¬
¡ßGHÊÇÔ²µÄÖ±¾¶£¬
¡àx1x2+y1y2=0£®
ÉèP£¨x3£¬y3£©£¬Ôò
PG
=(x1-x3£¬y1-y3)£¬
PH
=(x2-x3£¬y2-y3)
£¬
¡à
PG
PH
=x1x2+y1y2-x3(x1+x2)
-y3(y1+y2)+x32+y32£»
ÓÖGHµÄÖÐÐÄÊÇ£¨0£¬-1£©£¬
¡àx1+x2=0£¬y1+y2=-2£¬¶ø
x32
3
+
y32
4
=1
£¬
¡àx32=3-
3
4
y32
£¬
¡à
PG
PH
=
1
4
y32+2y3+3=
1
4
(y3+4)2-1
£¬
ÓÖ¡ß-2¡Üy3¡Ü2£¬
¡àµ±y3=2ʱ£¬
PG
PH
×î´ó£¬²¢ÇÒ×î´óֵΪ8£®
£¨3£©¡ßÖ±Ïßl£ºy=k£¨x+t£©£¬£¨t¡Ù0£©ÓëÔ²x2+£¨y+1£©2=1ÏàÇУ¬
¡à
|kt+1|
1+k2
=1
⇒k=
2t
1-t2
£¬£¨t¡Ù0£©£®¢Û
½«Ö±Ïßy=k£¨x+t£©´úÈëÍÖÔ²·½³Ì£¬ÕûÀíµÃ
£¨4+3k2£©x2+6k2tx+3k2t2-12=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
Ôòx1+x2=-
6k2t
4+3k2
£¬y1+y2
=k£¨x1+t£©+k£¨x2+t£©=k£¨x1+x2£©+2kt=
8kt
4+3k2
£¬
¡ß
OA
OB
=¦Ë
OP
=(x1+x2£¬y1+y2)
£¬
¡àP£¨-
6k2t
(4+3k2)¦Ë
£¬
8kt
(4+3k2)¦Ë
£©£¬
ÓÖPÔÚÍÖÔ²
x2
3
+
y2
4
=1
ÉÏ£¬
¡à
12k4t2
(4+3k2)2¦Ë2
+
16k2t2
(4+3k2)2¦Ë2
=1
£¬½âµÃ¦Ë2=
4k2t2
4+3k2
£¬
½«¢Û´úÈëÕûÀíµÃ£º¦Ë2=
4
(
1
t2
)2+
1
t2
+1
£¨t¡Ù0£©
¡à0£¼¦Ë2£¼4£¬
¡à¦ËµÄȡֵ·¶Î§ÊÇ£¨-2£¬0£©¡È£¨0£¬2£©£®
µãÆÀ£ºÊìÁ·ÕÆÎÕÔ²×¶ÇúÏߵ͍ÒåºÍÐÔÖÊ¡¢ÏòÁ¿ÏàµÈ¡¢Ö±ÏßÓëÔ²×¶ÇúÏßµÄÏཻÎÊÌâ¼°¸ùÓëϵÊýµÄ¹ØÏµÊǽâÌâµÄ¹Ø¼ü£®±¾ÌâÐèÒª½ÏÇ¿µÄ¼ÆËãÄÜÁ¦£¬×¢Òâ·ÖÀàÌÖÂÛµÄ˼Ïë·½·¨Ó¦Óã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª£¬ÔڵȱÈÊýÁÐ{an}ÖÐa1a2a3a4=1£¬a13a14a15a16=8£¬Çóa41a42a43a44£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¼×¡¢ÒÒÁ½È˲μÓijÖÖÑ¡°Î²âÊÔ£®ÔÚ±¸Ñ¡µÄ10µÀÌâÖУ¬¼×´ð¶ÔÆäÖÐÿµÀÌâµÄ¸ÅÂʶ¼ÊÇ
3
5
£¬ÒÒÄÜ´ð¶ÔÆäÖеÄ5µÀÌ⣮¹æ¶¨Ã¿´Î¿¼ÊÔ¶¼´Ó±¸Ñ¡µÄ10µÀÌâÖÐËæ»ú³é³ö3µÀÌâ½øÐвâÊÔ£¬´ð¶ÔÒ»Ìâ¼Ó10·Ö£¬´ð´íÒ»Ì⣨²»´ðÊÓΪ´ð´í£©¼õ5·Ö£¬ÖÁÉÙµÃ15·Ö²ÅÄÜÈëÑ¡£®
£¨1£©Çó¼×µÃ·ÖµÄÊýѧÆÚÍû£»
£¨2£©Çó¼×¡¢ÒÒÁ½ÈËͬʱÈëÑ¡µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Rt¡÷ABCµÄб±ßBCÇ¡ÔÚxÖáÉÏ£¬µãB£¨-2£¬0£©£¬C£¨2£¬0£©£¬ÇÒADΪBC±ßÉϵĸߣ®
£¨1£©ÇóADÖеãGµÄ¹ì¼£·½³Ì£»
£¨2£©Èô¹ýµã£¨1£¬0£©µÄÖ±ÏßlÓ루1£©ÖÐGµÄ¹ì¼£½»ÓÚÁ½²»Í¬µãP¡¢Q£¬ÊÔÎÊÔÚxÖáÉÏÊÇ·ñ´æÔÚ¶¨µãE£¨m£¬0£©£¬Ê¹
PE
QE
ºãΪ¶¨Öµ¦Ë£¿Èô´æÔÚ£¬Çó³öµãEµÄ×ø±ê¼°ÊµÊý¦ËµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

´Ó2¿ªÊ¼µÄ200¸öżÊý£¬¼´2¡¢4¡¢6¡¢8¡­400ÖУ¬ÓÃϵͳ³éÑùµÄ°ì·¨³éÈ¡20¸öżÊý×÷Ñù±¾£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ö¤Ã÷£ºÈý¸öÆ½ÃæÁ½Á½Ïཻ£¬ÓÐÈýÌõ½»Ïߣ¬Èç¹ûÆäÖÐÓÐÁ½Ìõ½»Ï߯½ÐУ¬ÄÇôËüÃÇÒ²ºÍµÚÈýÌõ½»Ï߯½ÐУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

µÈ²îÊýÁÐ{an}ÖÐa3=6£¬a6=0
£¨1£©ÇóͨÏʽan
£¨2£©µÈ±ÈÊýÁÐ{bn}ÖУ¬b1=-8£¬b2=a1+a2+a3£¬ÇóµÈ±ÈÊýÁÐ{bn}µÄǰnÏîºÍsn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=
ax
1+x2
£¨a¡Ù0£©£¬µ±a£¼0£¬ÇÒº¯ÊýÔÚ[-1£¬1]ÉϵÄÖµÓòΪ[-3£¬3]£¬Çóa£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

°´Èçͼ±íʾµÄËã·¨£¬ÈôÊäÈëÒ»¸öСÓÚ10µÄÕýÕûÊýn£¬ÔòÊä³önµÄÖµÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸