精英家教网 > 高中数学 > 题目详情
如图,PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=
1
2
CD=a,PD=
2
a.
(1)若M为PA中点,求证:AC∥平面MDE;
(2)求平面PAD与PBC所成锐二面角的大小(理);
     求二面角P-AC-D的正切值的大小(文).
考点:用空间向量求平面间的夹角,直线与平面平行的判定,与二面角有关的立体几何综合题
专题:空间位置关系与距离,空间向量及应用
分析:(1)连接PC,交DE与N,连接MN,由已知条件推导出MN∥AC,由此能够证明AC∥平面MDE.
(2)(理)以D为空间坐标系的原点,分别以 DA,DC,DP所在直线为x,y,z轴,建立空间直角坐标系,由此能求出平面PAD与平面PBC所成锐二面角的大小.
(文)过点D作DE⊥AC,交AC于E,连结PE,由题设条件推导出∠PED是二面角P-AC-D的平面角,由此能求出二面角P-AC-D的正切值.
解答: (1)证明:连接PC,交DE与N,连接MN,
在△PAC中,∵M,N分别为两腰PA,PC的中点,
∴MN∥AC,…(2分)
又∵AC?面MDE,MN?面MDE,
∴AC∥平面MDE.…(4分)
(2)(理)以D为空间坐标系的原点,
分别以 DA,DC,DP所在直线为x,y,z轴,
建立空间直角坐标系,
由题意知P(0,0,
2
a),B(a,a,0),C(0,2a,0),
PB
=(a,a,-
2
a),
BC
=(-a,a,0),…(6分)
设平面PAD的单位法向量为
n1 
,则可取
n1
=(0,1,0),…(7分)
设面PBC的法向量
n2
=(x,y,z),
n2
PB
=0,
n2
BC
=0

ax+ay-
2
az=0
-ax+ay=0
,∴
n2
=(
2
2
2
2
,1),…(10分)
设平面PAD与平面PBC所成锐二面角的大小为θ,
∴cosθ=|cos<
n1
n2
>|=|
2
2
2
|=
1
2
,…(11分)
∴θ=60°,
∴平面PAD与平面PBC所成锐二面角的大小为60°.…(12分)
(文)过点D作DE⊥AC,交AC于E,连结PE,
∵PD⊥平面ADC,
∴∠PED是二面角P-AC-D的平面角,…(7分)
∵∠ADC=90°,AB=AD=
1
2
CD=a,PD=
2
a,
∴AC=
a2+(2a)2
=
5
a

DE=
AD•DC
AC
=
a•2a
5
a
=
2
5
a
,.…(10分)
∴tan∠PED=
PD
DE
=
2
a
2
5
a
=
10
2

∴二面角P-AC-D的正切值为
10
2
.…(12分)
点评:本题考查直线与平面平行的证明,考查二面角的大小的求法,考查二面角的正切值的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正四棱锥P-ABCD,底面正方形的边长为1,侧棱长均为2,则二面角B-PC-D所成的平面角的余弦值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

由单位正方体(棱长为1的正方体)叠成的积木堆的正视图与侧视图均为图所示,则该积木堆中单位正方体的最少个数为(  )
A、5个B、4个C、6个D、7个

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
2-cosx
sinx
(0<x<π)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面ABEF⊥平面ABC,四边形ABEF为矩形,△ABC为等边三角形. O为AB的中点,OF⊥EC.
(Ⅰ)求证:OE⊥FC;
(Ⅱ)求二面角E-FC-O的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,PB⊥BC,PD⊥DC,且PC=
3

(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求二面角B-PD-C的余弦值;
(Ⅲ)棱PD上是否存在一点E,使直线EC与平面BCD所成的角是30°?若存在,求PE的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在等腰梯形ABCD中,AD∥BC,AB=BC=CD=
1
2
AD=2,O为AD上一点,且AO=1,平面外两点P、E满足,AE=1,EA⊥AB,EB⊥BD,PO∥EA.
(1)求证:EA⊥平面ABCD;
(2)求平面AED与平面BED夹角的余弦值;
(3)若BE∥平面PCD,求PO的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知不等式2x-1>m(x2-1)对任意m∈[-2,2]恒成立,求x的取值范围;
(2)是否存在m使得不等式2x-1>m(x2-1)对任意x∈[-2,2]恒成立.若存在,试求出m的取值范围;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥的每条边长都是
2
,各个顶点在同一个球面上.求球的表面积是多少?

查看答案和解析>>

同步练习册答案