分析 根据偶函数的性质等价转化所求的不等式,利用函数的单调性和定义域,列出关于m的不等式组,再求出m的取值范围.
解答 解:因为f(x)是定义在[-2,2]上的偶函数,
所以不等式f(1-m)<f(m)等价于:f(|1-m|)<f(|m|),
因为f(x)在[-2,0]上为增函数,
所以$\left\{\begin{array}{l}{|1-m|>|m|}\\{-2≤1-m≤2}\\{-2≤m≤2}\end{array}\right.$,解得-1≤m<$\frac{1}{2}$,
即m的取值范围是$[-1,\frac{1}{2})$,
故答案为:$[-1,\frac{1}{2})$.
点评 本题考查函数的奇偶性、单调性的综合应用,正确转化所求的不等式是解题的关键,考查转化思想,注意函数的定义域.
科目:高中数学 来源: 题型:解答题
| 组别 | PM2.5浓度(微克/立方米) | 频数(天) | 频率 |
| 第一组 | (0,25] | ||
| 第二组 | (25,50] | ||
| 第三组 | (50,75] | ||
| 第四组 | (75,100] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{3}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f($\frac{π}{3}$)=1 | |
| B. | 函数f(x)的图象关于x=$\frac{7π}{6}$对称 | |
| C. | 函数f(x)的图象关于(-$\frac{11π}{2}$,0)对称 | |
| D. | 函数f(x)的图象向右平移$\frac{π}{12}$个单位后得到y=Asinωx的图象 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?a0<1,函数f(x)=xa0(x>0)是减函数 | B. | ?a>1,函数f(x)=xa(x>0)不是减函数 | ||
| C. | ?a0>1,函数f(x)=xa(x>0)不是增函数 | D. | ?a>1,函数f(x)=xa(x>0)是减函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $\frac{3}{2}$ | C. | $\frac{4}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com