精英家教网 > 高中数学 > 题目详情
7.在平面直角坐标系xOy中,已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),圆O:x2+y2=r2(0<r<b),若圆O的一条切线l:y=kx+m与椭圆E相交于A,B两点.
(Ⅰ)当k=-$\frac{1}{2}$,r=1时,若点A,B都在坐标轴的正半轴上,求椭圆E的方程;
(Ⅱ)若以AB为直径的圆经过坐标原点O,探究a,b,r之间的等量关系,并说明理由.

分析 (Ⅰ)依题意原点O到切线l:y=-$\frac{1}{2}$x+m的距离为半径1,⇒m=$\frac{\sqrt{5}}{2}$,⇒A(0,$\frac{\sqrt{5}}{2}$),B($\sqrt{5}$,0)
代入椭圆方程,求出a、b即可
(2)由原点O到切线l:y=kx+m的距离为半径r⇒m2=(1+k2)r2.联立直线方程和与椭圆的方程,利用$\overrightarrow{OA}•\overrightarrow{OB}=0$求解.

解答 解:(Ⅰ)依题意原点O到切线l:y=-$\frac{1}{2}$x+m的距离为半径1,∴$\frac{m}{\sqrt{1+\frac{1}{4}}}=1$,⇒m=$\frac{\sqrt{5}}{2}$,
切线l:y=-$\frac{1}{2}$x+$\frac{\sqrt{5}}{2}$,⇒A(0,$\frac{\sqrt{5}}{2}$),B($\sqrt{5}$,0)
∴a=$\sqrt{5}$,b=$\frac{\sqrt{5}}{2}$,∴椭圆E的方程为:$\frac{{x}^{2}}{5}+\frac{{y}^{2}}{\frac{5}{4}}=1$.
(Ⅱ)设A(x1,y1),B(x2,y2),
联立$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$,得(b2+a2k2)x2+2a2kmx+a2m2-a2b2=0.
$△=(2{a}^{2}km)^{2}-4({b}^{2}+{a}^{2}{k}^{2})({a}^{2}{m}^{2}-{a}^{2}{b}^{2})\\;>0$.
${x}_{1}+{x}_{2}=\frac{-2{a}^{2}km}{{b}^{2}+{a}^{2}{k}^{2}},{x}_{1}{x}_{2}=\frac{{a}^{2}{m}^{2}-{a}^{2}{b}^{2}}{{b}^{2}+{a}^{2}{k}^{2}}$.
∵以AB为直径的圆经过坐标原点O,∴$\overrightarrow{OA}•\overrightarrow{OB}={x}_{1}{x}_{2}+{y}_{1}{y}_{2}=0$;
⇒(k2+1)x1x2+km(x1+x2)=m2(a2+b2)=(k2+1)a2b2…①
又∵圆O的一条切线l:y=kx+m,∴原点O到切线l:y=kx+m的距离为半径r⇒m2=(1+k2)r2…②
由①②得r2(a2+b2)=a2b2
∴以AB为直径的圆经过坐标原点O,则a,b,r之间的等量关为:r2(a2+b2)=a2b2

点评 本题考查曲线方程的求法,考查了直线与圆锥曲线位置关系的应用,训练了平面向量在求解圆锥曲线问题中的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在实数集R中,已知集合$A=\{x|x\sqrt{{x^2}-4}≥0\}$和集合B={x||x-1|+|x+1|≥2},则A∩B=(  )
A.{-2}∪[2,+∞)B.(-∞,-2)∪[2,+∞)C.[2,+∞)D.{0}∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.“|x+1|+|x-2|≤5”是“-2≤x≤3”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率$e=\frac{{\sqrt{2}}}{2}$,以上顶点和右焦点为直径端点的圆与直线x+y-2=0相切.
(1)求椭圆的标准方程;
(2)对于直线l:y=x+m和点Q(0,3),椭圆C上是否存在不同的两点A与B关于直线l对称,且3$\overrightarrow{QA}$•$\overrightarrow{QB}$=32,若存在实数m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若命题p:“$?{x_0}∈R,{2^{x_0}}-2≤{a^2}-3a$”是假命题,则实数a的取值范围是[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在数列{an}中,a1=1,a1+$\frac{{a}_{2}}{{2}^{2}}$+$\frac{{a}_{3}}{{3}^{2}}$+…+$\frac{{a}_{n}}{{n}^{2}}$=an(n∈N*),则数列{an}的通项公式an=$\frac{2n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.运行如图所示的程序框图,输出的数称为“水仙花数”.(算术符号MOD表示取余数,如11MOD2=1).下列数中的“水仙花数”是(  )
①“水仙花数”是三位数;
②152是“水仙花数”;
③407是“水仙花数”.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=ax+b,0<f(1)<2,-1<f(-1)<1,则2a-b的取值范围是$(-\frac{3}{2},\frac{5}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)短轴的端点P(0,b)、Q(0,-b),长轴的一个端点为M,AB为经过椭圆中心且不在坐标轴上的一条弦,若PA、PB的斜率之积等于-$\frac{1}{4}$,则P到直线QM的距离为$\frac{4\sqrt{5}b}{5}$.

查看答案和解析>>

同步练习册答案