(本题满分16分)
已知定义在上的函数,其中为大于零的常数.
(Ⅰ)当时,令,
求证:当时,(为自然对数的底数);
(Ⅱ)若函数,在处取得最大值,
求的取值范围
科目:高中数学 来源: 题型:解答题
已知函数定义域为(),设.
(1)试确定的取值范围,使得函数在上为单调函数;
(2)求证:;
(3)求证:对于任意的,总存在,满足,并确定这样的的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知定义在R上的函数,其中a为常数.
(I)若x=1是函数的一个极值点,求a的值;
(II)若函数在区间(-1,0)上是增函数,求a的取值范围;
(III)若函数,在x=0处取得最大值,求正数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给出一个不等式(x∈R),经验证:当c=1,2,3时,不等式对一切实数x都成立。试问:当c取任何正数时,不等式对任何实数x是否都成立?若能成立,请给出证明;若不成立,请求出c的取值范围,使不等式对任何实数x都能成立。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com