精英家教网 > 高中数学 > 题目详情

(本题满分16分)
已知定义在上的函数,其中为大于零的常数.
(Ⅰ)当时,令
求证:当时,为自然对数的底数);
(Ⅱ)若函数,在处取得最大值,
的取值范围



所以
所以当时,取得极小值,上的最小值
因为
所以---------------------8分

时,为极小值,所以在[0,2]上的最大值只能为;                                    ---------------------12分
时,上单调递减,最大值为
所以上的最大值只能为;------------------------14分
又已知处取得最大值,所以
解得,所以      ---------------------16分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设a<1,集合.
(1)求集合D(用区间表示);
(2)求函数在D内的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且其导函数的图像过原点.
(1)当时,求函数的图像在处的切线方程;
(2)若存在,使得,求的最大值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数与函数.
(I)若的图象在点处有公共的切线,求实数的值;
(II)设,求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当  时,求函数  的最小值;
(Ⅱ)当  时,讨论函数  的单调性;
(Ⅲ)求证:当 时,对任意的 ,且,有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数定义域为),设
(1)试确定的取值范围,使得函数上为单调函数;
(2)求证:
(3)求证:对于任意的,总存在,满足,并确定这样的的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求函数上的最小值;
(2)若函数上存在单调递增区间,试求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在R上的函数,其中a为常数.
(I)若x=1是函数的一个极值点,求a的值;
(II)若函数在区间(-1,0)上是增函数,求a的取值范围;
(III)若函数,在x=0处取得最大值,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给出一个不等式(x∈R),经验证:当c=1,2,3时,不等式对一切实数x都成立。试问:当c取任何正数时,不等式对任何实数x是否都成立?若能成立,请给出证明;若不成立,请求出c的取值范围,使不等式对任何实数x都能成立。

查看答案和解析>>

同步练习册答案