精英家教网 > 高中数学 > 题目详情
16.平面上有两定点A、B和动点P,|PA|=2|PB|,则动点P的轨迹为(  )
A.椭圆B.C.双曲线D.抛物线

分析 设P点的坐标为(x,y),A(a,0),B(b,0),利用两点间的距离公式代入等式|PA|=2|PB|,化简整理得一个关于x,y的二元二次方程,所以点P的轨迹是一个圆.

解答 解:设A(a,0),B(b,0),设P点的坐标为(x,y),
动点P满足|PA|=2|PB|,
即|PA|2=4|PB|2
则(x-a)2+y2=4[(x-b)2+y2],
即x2-2ax+a2+y2=4x2-8bx+4b2+4y2
即3x2+3y2+2ax-4bx+4b2-a2=0
即x2+y2+$\frac{2}{3}$ax-$\frac{4}{3}$bx+$\frac{1}{3}$(4b2-a2)=0,
方程为x,y的二元二次方程,
则对应的轨迹是圆,
故选:B

点评 本题给出动点的轨迹,着重考查了两点间的距离公式、圆的一般方程,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.函数f(x)=Asin(ωx-φ)+1(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象如图所示.
(1)求函数f(x)的解析式;
(2)设α∈[0,$\frac{π}{2}$],且f($\frac{α}{2}$)=1+$\frac{\sqrt{3}}{2}$,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆A:(x+1)2十y2=16,定点B(1,0),P为圆A上任一点,线段PB的垂直平分线交线段PA于点Q.
(1)求点Q的轨迹C的方程;
(2)若直线l:y=k(x-1)(k≠0)与轨迹C交于M,N两点,轨迹C的左端点为A1,右端点为A2,证明:直线A1M与直线A2N的交点在定直线上,并求该直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线系y=2x+b、圆x2+y2=2直线线系中的直线与圆的交点A、B,试用b为参数表示AB的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知抛物线C:y2=6x的焦点为F,准线为l,点P在C上,点Q在l上,若$\overrightarrow{PF}$=$\overrightarrow{FQ}$,则直线PQ的斜率为(  )
A.±1B.±$\sqrt{2}$C.±$\sqrt{3}$D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.袋中有大小完全相同的2个红球和3个黑球,不放回地摸出两球,设“第一次摸出红球”为事件A,“摸得的两球同色”为事件B,则概率P(B|A)为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知1,2,…,n满足下列性质T的排列a1,a2,…,an的个数为f(n)(n≥2)排列a1,a2,…,an中有且只有一个ai>ai+1(i∈{1,2,…,n-1})
(1)求f(3)=4;f(4)=11;f(5)=26
(2)求f(n)的表达式,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在极坐标系中.点A(1,$\frac{π}{3}$),B(2,$\frac{π}{3}$).动点P满足PA=$\frac{1}{2}$PB.则动点P轨迹的极坐标方程为ρ=$\frac{2}{3}$cosθ+$\frac{2\sqrt{3}}{3}$sinθ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.一个球与正三棱柱的三个侧面和两个底面都相切,已知这个球的体积为36π,那么该三棱柱的体积是162$\sqrt{3}$.

查看答案和解析>>

同步练习册答案