精英家教网 > 高中数学 > 题目详情
13.y=$\frac{1}{2}$x+cosx的单调递减区间为(2kπ+$\frac{π}{6}$,2kπ+$\frac{5π}{6}$),k∈Z.

分析 求函数的导数,利用函数单调性和导数之间的关系进行求解即可.

解答 解:函数的导数f′(x)=$\frac{1}{2}$-sinx,
由f′(x)=$\frac{1}{2}$-sinx<0,
得sinx>$\frac{1}{2}$,
解得2kπ+$\frac{π}{6}$<x<2kπ+$\frac{5π}{6}$,k∈Z,
故函数的单调递减区间为(2kπ+$\frac{π}{6}$,2kπ+$\frac{5π}{6}$),k∈Z,
故答案为:(2kπ+$\frac{π}{6}$,2kπ+$\frac{5π}{6}$),k∈Z

点评 本题主要考查函数单调区间的求解,求函数的导数,利用函数单调性和导数之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知a≠b,求证:a4+6a2b2+b4>4ab(a2+b2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.抛物线y=-x2上的点到直线4x+3y-8=0的距离的最小值是(  )
A.$\frac{8}{5}$B.$\frac{7}{5}$C.$\frac{4}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知抛物线C的方程为y2=4x,点M(4,0),过点M且垂直于x轴的直线l交抛物线于A、B两点.设P是抛物线上异于A、B的任意一点,PQ⊥y轴于点Q,直线PA、PB的斜率分别为k1,k2
(1)求$\frac{PM}{PQ}$的最小值;
(2)求证:|${\frac{1}{k_1}-\frac{1}{k_2}}$|为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.抛物线y2=4x上一点M到焦点的距离为3,则点M的横坐标x=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若直线l:x+my+c=0与抛物线y2=2x交于A、B两点,O点是坐标原点.
(1)当m=-1,c=-2时,求证:OA⊥OB;
(2)若OA⊥OB,求证:直线l恒过定点,并求出这个定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.定义域为(0,+∞)的函数f(x),g(x),f(x)<f′(x),g(x)>g′(x),则(  )
A.2013•f(ln2012)<2012•f(ln2013)
2014•g(2013)>2013•g(2014)
B.2013•f(ln2012)>2012•f(ln2013)
2014•g(2013)>2013•g(2014)
C.2013•f(ln2012)>2012•f(ln2013)
2014•g(2013)<2013•g(2014)
D.2013•f(ln2012)<2012•f(ln2013)
2014•g(2013)<2013•g(2014)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)的导函数图象如图所示,则函数f(x)的单调递减区间是(  )
A.[x1,x3]B.[x2,x4]C.[x4,x6]D.[x5,x6]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.经过A(a,b)和B(3a,3b)(a≠0)两点的直线的斜率k=$\frac{b}{a}$,倾斜角α=$arctan\frac{b}{a}(ab≥0)$或$π+arctan\frac{b}{a}(ab<0)$.

查看答案和解析>>

同步练习册答案