精英家教网 > 高中数学 > 题目详情
10.一个棱长为1的正方体沿其棱的中点截去部分后所得几何体的三视图如图所示,则该几何体的体积为$\frac{23}{24}$.

分析 根据几何体的三视图,得出该几何体是棱长为1的正方体,去掉两个相同的小三棱锥;
再根据图中数据球场它的体积.

解答 解:根据几何体的三视图,得,
该几何体是棱长为1的正方体,在两个顶点处各去掉一个相同的小三棱锥;
∴该几何体的体积为
V正方体-2V小三棱锥=13-2×$\frac{1}{3}$×$\frac{1}{2}$×${(\frac{1}{2})}^{2}$×$\frac{1}{2}$=$\frac{23}{24}$.
故答案为:$\frac{23}{24}$.

点评 本题考查了利用空间几何体的三视图求几何体的体积的应用问题,解题时应根据三视图得出几何体的结构特征是什么.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.在△ABC中,a,b,c分别为角A,B,C所对的边,且ccosA=b,则△ABC是(  )
A.锐角三角形B.钝角三角形C.直角三角形D.斜三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数在(0,+∞)上为减函数的是(  )
A.y=xB.y=x2C.y=$\frac{1}{x}$D.y=$\sqrt{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.F1,F2分别是椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左右焦点,过F1的直线与椭圆相交于A、B两点,则△ABF2的周长是8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)是R上的奇函数,且当x∈(-∞,0]时,f(x)=-xlg(2m-x+$\frac{1}{2}$).当x>0时,不等式f(x)<0恒成立,则m的取值范围是(  )
A.(-∞,-1)B.(-1,1]C.[0,+∞)D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax3-x2+bx(a,b∈R),曲线y=f(x)在点(3,f(3))处的切线方程为y=-9.
(1)求f(x)的单调递减区间;
(2)记g(x)=f′(x)-kxlnx-k(k为正整数,f′(x)为y=f(x)导函数),曲线y=g(x)上的点都在不等式y>-6x-4表示的平面区域内,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知tanα=$\frac{2}{5}$,tanβ=$\frac{1}{4}$,则tan(α-β)等于(  )
A.$\frac{13}{18}$B.$\frac{13}{22}$C.$\frac{1}{6}$D.$\frac{3}{22}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)是定义在[m,4m+5]上的奇函数,则m=-1,当x>0时,f(x)=lg(x+1),则当x<0时,f(x)=-lg(1-x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在一辆汽车通行的道路上,顺次有4盏红,绿信号灯,若每盏灯以0.5的概率允许或禁止车辆向前通行,求汽车停止前进时通过的信号灯数的分布列及期望.

查看答案和解析>>

同步练习册答案