精英家教网 > 高中数学 > 题目详情
有下列命题
①平行于y轴的直线不能用点方向式表示;
②平行于y轴的直线不能用点法向式表示;
③平行于y轴的直线不能用一般式表示;
④平行于y轴的直线不能用点斜式表示;
以上命题中,正确的个数为(  )
A、1B、2C、3D、4
考点:命题的真假判断与应用
专题:直线与圆
分析:利用直线的斜率与直线方程的关系即可判断出.
解答: 解:①平行于y轴的直线没有斜率,因此不能用点方向式表示,正确;
②平行于x轴的直线不能用点法向式表示,不正确;
③平行于y轴的直线方程为x-c=0,可以用一般式表示,因此不正确;
④平行于y轴的直线没有斜率,不能用点斜式表示,正确.
综上可知:只有①④正确.
故选:B.
点评:本题考查了直线的方程与斜率的关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数y=
x2-2x
x2-2x+3
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于D,过点C作BD的平行线与圆交于点E,与AB相交于点F,AF=6,FB=2,EF=3,则线段CD的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若x∈[1,+∞),不等式(m-m2)2x+4x+1>0恒成立,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是双曲线
x2
a2
-
y2
b2
=1的左、右焦点,过F1的直线l与双曲线的左、右两支分别交于A、B两点.若△ABF2是等边三角形,则该双曲线的离心率为(  )
A、2
B、
7
C、
13
D、
15

查看答案和解析>>

科目:高中数学 来源: 题型:

在下列命题中:
①若
a
b
共线,则
a
b
所在的直线平行;
②若
a
b
所在的直线是异面直线,则
a
b
一定不共面;
③若
a
b
c
三向量两两共面,则
a
b
c
三向量一定也共面;
④已知三向量
a
b
c
,则空间任意一个向量
p
总可以唯一表示为
p
=x
a
+y
b
+z
c

其中真命题的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
①命题“若x>0,则2x>1”的否命题是“若x≤0,则2x≤1”;
②关于x的不等式a<sin2x+
1
sin2x
恒成立,则a的取值范围是a<3;
③函数f(x)=alog2|x|+x+b为奇函数的充要条件是a+b=0;
其中正确的个数是(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

我们称与函数C1:y=f(x)(x∈G,y∈N)的解析式和值域相同,定义域不同的函数C2:y=f(x)(x∈M,y∈N)为C1的异构函数,则f(x)=log2|x|(x∈{1,2,4})的异构函数有(  )个.
A、8B、9C、26D、27

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是梯形,AD∥BC且∠ADC=60°,BC=2AD=4.
(1)求证:DC⊥PA;
(2)在PB上是否存在一点M(不包含端点P,B)使得二面角C-AM-B为直二面角,若存在求出PM的长,若不存在请说明理由.

查看答案和解析>>

同步练习册答案