精英家教网 > 高中数学 > 题目详情
求函数y=
x2-2x
x2-2x+3
的值域.
考点:函数的值域
专题:计算题,函数的性质及应用
分析:本题考查二次了二次函数解析式的配方,求值域,分离常法求函数的值域.
解答: 解:y=
x2-2x+3-3
x2-2x+3
=1-
3
x2-2x+3
=1-
3
(x-1)2+2

∵(x-1)2+2≥2
1
(x-1)2+2
∈(0,
1
2
]
,∴y∈[
1
2
,1)

所以函数的值域为[-
1
2
,1)
点评:本题运用分离常数法求含有分式函数的值域,注意自变量的取值范围,这是一种常考的题型,应该引起注意,在计算过程中容易出错,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若向量
a
b
是两个互相垂直的单位向量,则向量
a
-
3
b
在向量
b
方向上的投影为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,则该几何体的体积为(  )
A、4
3
B、
8
3
3
C、
4
3
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,点P到两点(
2
,0),(-
2
,0)
的距离之和等于4,设点P的轨迹为C,直线y=kx+1与C交于A,B两点.
(1)线段AB的长是3,求实数k;
(2)(理)若点A在第四象限,当k<0时,判断|
OA
|与|
OB
|的大小,并证明.
     (文)求证:
OA
OB
<0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆Γ:
x2
4
+y2=1

(1)椭圆Γ的短轴端点分别为A,B(如图),直线AM,BM分别与椭圆Γ交于E,F两点,其中点(m,
1
2
)满足满足m≠0,且m≠±
3

①用m表示点E,F的坐标;
②若△BME面积是△AMF面积的5倍,求m的值;
(2)若圆φ:x2+y2=4.l1,l2是过点P(0,-1)的两条互相垂直的直线,其中l1交圆φ于T、R两点,l2交椭圆Γ于另一点Q.求△TRQ面积取最大值时直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,AB=BB1=1,AC=
2
,直线B1C与平面ABC成45°角.
(1)求证:平面A1B1C⊥平面B1BCC1
(2)求二面角A-B1C-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD中,底面ABCD是边长为2a的菱形,∠BAD=60°,侧棱PA⊥平面ABCD,且PA=
3
a,求:
(1)二面角P-BD-A的大小;
(2)点A到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,a,b,c分别为∠A,∠B,∠C的对边,∠B=60°,b=2,a=x,如c有两组解,则x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题
①平行于y轴的直线不能用点方向式表示;
②平行于y轴的直线不能用点法向式表示;
③平行于y轴的直线不能用一般式表示;
④平行于y轴的直线不能用点斜式表示;
以上命题中,正确的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

同步练习册答案