精英家教网 > 高中数学 > 题目详情

已知函数,若的最大值为1
(Ⅰ)求的值,并求的单调递增区间;
(Ⅱ)在中,角的对边,若,且,试判断三角形的形状.

(Ⅰ); (Ⅱ)△ABC为直角三角形.

解析试题分析:(Ⅰ)若的最大值为1,求的值,并求的单调递减区间,需将化成一个角的一个三角函数,因此须对进行整理,可利用两角或与差的三角函数公式展开得到,然后利用两角和与差的三角函数公式整理成,利用的最大值为1,来确定的值,并求得的单调递减区间;(Ⅱ)判断三角形的形状,由,可求出角B的值,由已知,利用正弦定理将边化成角,由于,则,即,从而求出,这样就判断出三角形的形状.
试题解析:(Ⅰ)由题意可得 (3分)
,所以, (4分)
,解不等式可得单调增区间为 (6分)
(Ⅱ)因为, 则, , ∵
 (8分)
,则
 (10分)
,所以,故△ABC为直角三角形 (12分)
考点:两角和正弦公式,正弦函数的单调性与最值,根据三角函数的值求角,解三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)若的值;
(2)求函数最小正周期及单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的最小正周期;
(2)求在区间上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=sinx+cosx,f′(x)是f(x)的导函数,F(x)=f(x)f′(x)+f2(x)
(Ⅰ)求F(x)的最小正周期及单调区间;
(Ⅱ)求函数F(x)在上的值域;
(Ⅲ)若f(x)=2f′(x),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△中,角所对的边分别为,若
(Ⅰ)求△的面积;
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角A,B,C的对边分别为a,b,c,
(1)求角C的大小;
(2)若△ABC的外接圆直径为1,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中)的图象如图所示.

(1) 求函数的解析式;
(2) 设函数,且,求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的最小正周期和最值;
(2)求函数的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数图像的对称中心;
(Ⅱ)求函数在区间上的最小值和最大值.

查看答案和解析>>

同步练习册答案