精英家教网 > 高中数学 > 题目详情
设函数f(x)=ax+ex(a∈R)
(1)若函数f(x)有且只有两个零点x1,x2(x1<x2),求实数a的取值范围;
(2)当a=1时,若曲线f(x)上存在横坐标成等差数列的三个点A,B,C
①证明:△ABC为钝角三角形;
②试判断△ABC能否为等腰三角形,并说明理由.
考点:利用导数研究函数的单调性,函数零点的判定定理
专题:导数的概念及应用
分析:(1)由已知得f′(x)=a+ex,由此利用导数性质和分类讨论思想能求出实数a的取值范围.
(2)①当a=1时,f(x)=x+ex,对于曲线y=f(x)上横坐标成等差数列的三个点A,B,C,由A到B的变化率要小于由B到C的变化率,∠ABC一定是钝角,由此能证明△ABC为钝角三角形.
②由于A到B的变化率要小于B到C的变化率,由两点间距离公式得AB<BC,从而△ABC不可能等腰三角形.
解答: (1)解:∵f(x)=ax+ex(a∈R),
∴f′(x)=a+ex
①当a=0时,f(x)>0,函数无零点;
②当a>0时,f′(x)>0,f(x)是增函数,有一个零点;
③当a<0时,由f′(x)=a+ex=0,得x=ln(-a),
当x∈(-∞,ln(-a)),f(x)单调递减;当x∈(ln(-a),+∞),f(x)单调递增.
f(x)在两个零点,则f(ln(-a))=aln(-a)-a<0,
即ln(-a)-1>0,a<-e.
综上所述,若函数f(x)有且只有两个零点x1,x2(x1<x2),
则实数a的取值范围是(-∞,-e).
(2)①证明:当a=1时,f(x)=x+ex
对于曲线y=f(x)上横坐标成等差数列的三个点A,B,C,
且横坐标依次增大,
由于此函数是一个单调递增的函数,
故由A到B的变化率要小于由B到C的变化率,
∴∠ABC一定是钝角,
∴△ABC为钝角三角形.
②解:△ABC不可能等腰三角形.
理由如下:
由于A到B的变化率要小于B到C的变化率,
由两点间距离公式得AB<BC,
∴△ABC不可能等腰三角形.
点评:本题重点考查利用导数研究函数的性质,利用函数的性质解决不等式、方程问题.重点考查学生的代数推理论证能力.解题时要认真审题,注意导数性质的合理运用
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某校100名学生期中考试数学成绩的频率分布直方图如图.其中成绩分组区间如下:
组号第一组第二组第三组第四组第五组
分组[50,60)[60,70)[70,80)[80,90)[90,100)
(Ⅰ)求图中a的值;
(Ⅱ)现用分层抽样的方法从第3、4、5组中随机抽取6名学生进行试卷分析,求第3、4、5组各抽取多少名学生?
(Ⅲ)在(Ⅱ)的前提下,决定在6名学生中随机抽取2名学生面试,求:第4组至少有一名学生被面试的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项都不相等的等差数列{an}的前五项和为30,且a2是a1和a4的等比中项.
(1)求数列{an}的通项公式an及前n项和Sn
(2)若数列{bn}满足bn=
1
Sn
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为
2
3
,乙获胜的概率为
1
3
,各局比赛结果相互独立.
(Ⅰ)求甲在3局以内(含3局)赢得比赛的概率;
(Ⅱ)记X为比赛决出胜负时的总局数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

从1,3,5,7,9中任取2个数,从0,2,4,6中任取2个数,
(1)能组成多少个没有重复数字的四位数?
(2)若将(1)中所有个位是5的四位数从小到大排成一列,则第100个数是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x),周期为4,且x∈(0,2)时,f(x)=
3x
9x+1

(1)求f(x)在[-2,2]上的解析式;
(2)若关于x的方程f(x)=
2
3x+2a
在x∈(0,2)上有两个不等实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

班主任对小明、小华的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:
小明6080709070
小华8060708075
问:小明、小华两人谁的平均成绩高?谁的各门功课发展较平衡?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
10-m
+
y2
m-2
=1的长轴在x轴上,若焦距为4,则m等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

1+sinθ-cosθ
1+sinθ+cosθ
+
1+sinθ+cosθ
1+sinθ-cosθ
化简得
 

查看答案和解析>>

同步练习册答案