精英家教网 > 高中数学 > 题目详情
11.为了普及环保知识,共建美丽宜居城市,某市组织了环保知识竞赛,随机抽取了甲、乙两单位中各5名职工的成绩(单位:分)如下表:
甲单位8788919193
乙单位8589919293
(1)根据表中的数据,分别求出甲、乙两个单位这5名职工成绩的平均数和方差,并判断哪个单位的职工对环保知识掌握得更好;(参考公式:样本数据x1,x2,…,xn的方差:${s^2}=\frac{1}{n}[{({x_1}-\overline x)^2}+{({x_2}-\overline x)^2}+…+{({x_n}-\overline x)^2}]$,其中$\overline x$为样本平均数)
(2)用简单随机抽样法从乙单位5名职工中抽取2名,求抽取的2名职工的成绩差的绝对值至少是4的概率.

分析 (1)先求出甲、乙两个单位职工的考试成立的平均数,以及它们的方差,则方差小的更稳定.
(2)从乙单位抽取两名职工的分数,所有基本事件用列举法求得共10种情况,抽取的两名职工的分数差值至少是4的事件用列举法求得共有5个,由古典概型公式求得抽取的两名职工的分数之差的绝对值至少是4的概率.

解答 解:(1)$\overline{{x}_{甲}}$=$\frac{1}{5}$(87+88+91+91+93)=90,$\overline{{x}_{乙}}$=$\frac{1}{5}$(85+89+91+92+93)=90…(2分)
${{s}_{甲}}^{2}$=$\frac{1}{5}$[(87-90)2+(88-90)2+(91-90)2+(91-90)2+(93-90)2]=$\frac{24}{5}$,
${{s}_{乙}}^{2}$=$\frac{1}{5}$[(85-90)2+(89-90)2+(91-90)2+(92-90)2+(93-90)2]=8…(4分)
∵$\frac{24}{5}$<8,∴甲单位职工对法律知识的掌握更为稳定…(5分)
(2)设抽取的2名职工的成绩只差的绝对值至少是4分为事件A,
所有基本事件有:(85,89),(85,91),(85,92)(85,93),(89,85),
(89,91),(89,92),(89,93),(91,85),(91,89),(91,92),
(91,93),(92,85),(92,89),(92,91)(92,93),(93,85),
(93,89),(93,91),(93,92),共20个…(8分)
事件A包含的基本事件有:
(85,89),(85,91),(85,92),(85,93),(89,85),(89,93),
(91,85),(92,85),(93,85),(93,89),共10个…(10分)
∴P(A)=0.5…(12分)

点评 本题主要考查平均数和方差的定义与求法,用列举法计算可以列举出基本事件和满足条件的事件,古典概率的计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.根据如表,计算X2≈(  )
又发病未发病
做移植手术39157
未做移植手术29167
A.1.51B.1.62C.1.78D.1.75

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如果执行如图的程序框图,那么输出的值是$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.不等式2x2-x-3≥0的解集为{x|x≤-1或x$≥\frac{3}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某校高一(2)班共有60名同学参加期末考试,现将其数学学科成绩(均为整数)分成六个分数段[40,50),[50,60),…,[90,100],画出如图所示的部分频率分布直方图,请观察图形信息,回答下列问题:
(1)求a并估计这次考试中该学科的中位数、平均值;
(2)现根据本次考试分数分成下列六段(从低分段到高分段依次为第一组、第二组…第六组)为提高本班数学整体成绩,决定组与组之间进行帮扶学习.若选出的两组分数之差不小于30分(以分数段为依据,不以具体学生分数为依据,如:[40,50),[70,80)这两组分数之差为30分),则称这两组为“最佳组合”,试求选出的两组为“最佳组合”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.节能减排以来,兰州市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.
(1)求直方图中x的值;
(2)求月平均用电量的众数和中位数;
(3)估计用电量落在[220,300)中的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.对于函数f(x),若在定义域x内存在实数x,满足f(-x)=-f(x),则称f(x)为“局部奇函数”.p:f(x)=m+2x为定义在[-1,1]上的“局部奇函数”;q:曲线g(x)=x2+(5m+1)x+1与x轴交于不同的两点;若“p∧q”为假命题,“p∨q”为真命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.(2-x+x2)(1+2x)6的展开式中,x2的系数为109(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若实数x,y满足不等式组$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x-y+1≤0}\\{x+y-3≤0}\end{array}\right.$,则$\frac{y+1}{x}$的最小值为3.

查看答案和解析>>

同步练习册答案