精英家教网 > 高中数学 > 题目详情
11.设函数f(x)=$\left\{\begin{array}{l}{{3}^{-x},x<1}\\{{x}^{2},x>1}\end{array}\right.$,若f(x)>9,则x的取值范围是(  )
A.(-∞,-2]∪[3,+∞)B.(-2,3)C.(-∞,-3)∪(2,+∞)D.(-∞,-2)∪(3,+∞)

分析 根据分段函数的表达式进行求解即可.

解答 解:若x>1,则由f(x)>9,得 x2>9,解得x>3或x<-3(舍),
若x<1,则由f(x)>9,得 3-x>9,解得x<-2,
综上不等式的解集为(-∞,-2)∪(3,+∞)
故选:D

点评 本题主要考查不等式的求解,根据分段函数的不等式,分别进行求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.最近高考改革方案已在上海和江苏开始实施,某教育机构为了了解我省广大师生对新高考改革的看法,对某市部分学校500名师生进行调查,统计结果如下:
 赞成改革不赞成改革无所谓
教师120y40
学生xz130
在全体师生中随机抽取1名“赞成改革”的人是学生的概率为0.3,且z=2y.
(1)现从全部500名师生中用分层抽样的方法抽取50名进行问卷调查,则应抽取“不赞成改革”的教师和学生人数各是多少?
(2)在(1)中所抽取的“不赞成改革”的人中,随机选出三人进行座谈,求至少一名教师被选出的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an}前n项的和Sn=n2
(Ⅰ)求数列an}的通项公式
(Ⅱ)设bn=a3+(-1)nan,求数列{bn}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知抛物线C:x2=8y的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若$\overrightarrow{PF}=2\overrightarrow{FQ}$,则|QF|=(  )
A.6B.3C.$\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.多面体的三视图如图所示,则该多面体的体积为(  )(单位cm)
A.$\frac{{16\sqrt{2}}}{3}$B.$\frac{32}{3}$C.$16\sqrt{2}$D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知x>0,y>0,且x+y=1,求(x+$\frac{1}{x}$)2+(y+$\frac{1}{y}$)2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示的四边形ABCD中,已知AB⊥AD,∠ABC=120°,∠ACD=60°,AD=27,设∠ACB=θ,C点到AD的距离为h.
(Ⅰ)求h(用θ表示)
(Ⅱ)求AB+BC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.ABCD是矩形,AB=4,AD=3,沿AC将△ADC折起到△AD′C,使平面AD′C⊥平面△ABC,F是AD′的中点,E是AC上的一点,给出下列结论:
①存在点E,使得EF∥平面BCD′;
②存在点E,使得EF⊥平面ABD′;
③存在点E,使得D′E⊥平面ABC;
④存在点E,使得AC⊥平面BD′E.
其中正确结论的序号是①③.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知P、A、B、C是球O球面上的四点,△ABC是正三角形,三棱锥P-ABC的体积为$\frac{9}{4}$$\sqrt{3}$,且∠APO=∠BPO=∠CPO=30°,则球O的表面积为16π.

查看答案和解析>>

同步练习册答案