精英家教网 > 高中数学 > 题目详情
已知向量
OP
=(2sinα,2cosα),
OQ
=(-cosβ,sinβ),其中O为坐标原点,若|
PQ
|≥
t2-2t-2
|
OQ
|对任意实数α、β都成立,则实数t的取值范围为(  )
A、[-1,3]
B、[-1,1-
3
]∪[1+
3
,3]
C、[1-
3
,1+
3
]
D、[1-
3
,3]
考点:平面向量数量积的运算
专题:平面向量及应用
分析:先由题意求出|
PQ
|
=
(-cosβ-2sinα)2+(sinβ-2cosα)2
,得出只须|
PQ
|
min
t2-2t-2
,即1≥
t2-2t-2
,解不等式求出即可.
解答: 解:
PQ
=
OQ
-
OP
=(-cosβ-2sinα,sinβ-2cosα),
|
PQ
|
=
(-cosβ-2sinα)2+(sinβ-2cosα)2
=
5+4sin(α-β)
∈[1,3],|
OQ
|
=1,
又|
PQ
|≥
t2-2t-2
|
OQ
|对任意实数α、β都成立,
∴只须|
PQ
|
min
t2-2t-2

即1≥
t2-2t-2
,∴0≤t2-2t-2≤1.
解得:-1≤t≤1-
3
,或1+
3
≤t≤3,
故选:B.
点评:本题考查了平面向量的数量积的运算,不等式的解法,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若f(x)=|log3x|,则满足不等式f(x)>f(
7
2
)的x的范围是(  )
A、(0,
2
7
)∪(1,
7
2
B、(
7
2
,+∞)
C、(0,
2
7
)∪(
7
2
,+∞)
D、(
2
7
7
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为a的正方体ABCD-A1B1C1D1中,若点P是棱上一点,则满足PA+PC1=2a的点P的个数为(  )
A、3个B、4个
C、5 个D、6个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1,l2和平面α,则l1∥l2的一个必要不充分的条件是(  )
A、l1∥α且l2∥α
B、l1⊥α且l2⊥α
C、l1∥α且l2
D、l1与l2成等角

查看答案和解析>>

科目:高中数学 来源: 题型:

“x>0”是“
1
x
>0”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

由直线x+y-1=0,y-2=0和x-1=0所围成的三角形区域(包括边界)用不等式组可表示为(  )
A、
x+y-1≤0
y≤2
x≥1
B、
x+y-1≥0
y≤2
x≤1
C、
x+y-1≥0
y≥2
x≥1
D、
x+y-1≤0
y≤2
x≤1

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是角A,B,C的对边,若b=2c•cosA,则△ABC一定是(  )
A、等边三角形
B、等腰三角形
C、直角三角形
D、钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

设A表示一点,l,m表示两条不同的直线,α,β,γ表示三个不同的平面,给出下列四个命题:
①若l⊥α,m⊥l,m⊥β,则α⊥β;
②若m⊥α,m⊥β,则α∥β;
③若m是平面α的一条斜线,l为过A的一条动直线,则可能有l⊥m,l⊥α;
④若α⊥γ,β⊥γ,则α∥β;
其中真命题的序号是(  )
A、①②B、①③C、②④D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

某人有n元钱,他每天买一次物品,每次买物品的品种很单调,或者买一元钱的甲物品,或者买两元钱的乙物品,或者买两元钱的丙物品,问他花完这n元钱有多少种不同的方式.

查看答案和解析>>

同步练习册答案