精英家教网 > 高中数学 > 题目详情
7.在平面直角坐标系中,已知△ABC三个顶点坐标分别为A(-3,0),B(2,0),C(0,-4),经过这三个点的圆记为M.
(1)求BC边的中线所在直线的一般式方程;
(2)求圆M的方程.

分析 (1)首先利用中点坐标求出BC的中点D的坐标,进一步利用点斜式求出直线的方程.
(2)直接利用圆的一般式建立三元一次方程组,进一步解方程组求出圆的方程.

解答 解:(1)在平面直角坐标系中,已知△ABC三个顶点坐标分别为B(2,0),C(0,-4),
则:设BC的中点为D(x,y)
所以:x=$\frac{2+0}{2}=1$,y=$\frac{-4+0}{2}=-2$,
则:D(1,-2)
所以:直线AD的斜率k=-$\frac{1}{2}$,
则:直线AD的方程为:y=-$\frac{1}{2}$(x+3)
整理成一般式为:x+2y+3=0.
(2)已知△ABC三个顶点坐标分别为A(-3,0),B(2,0),C(0,-4),经过这三个点的圆记为M,
设圆的方程为:x2+y2+Dx+Ey+F=0,
则:$\left\{\begin{array}{l}9-2D+F=0\\ 4+3D+F=0\\ 16-4E+F=0\end{array}\right.$
解得:$\left\{\begin{array}{l}D=1\\ E=\frac{9}{4}\\ F=-7\end{array}\right.$,
所以圆M的方程为:${x}^{2}+{y}^{2}+x+\frac{9}{4}y-7=0$.

点评 本题考查的知识要点:中点坐标公式的应用,利用点斜式求直线的方程,圆的一般式的应用,主要考查学生的应用能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若圆x2+y2-2x+4y=3-2k-k2与直线2x+y+5=0相切,则k=(  )
A.3或-1B.-3或1C.2或-1D.-2或1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.“坐标法”是以坐标系为桥梁,把几何问题转化成代数问题,通过代数运算研究图形的几何性质的方法,它是解析几何中是基本的研究方法.请用坐标法证明下面问题:
已知圆O的方程是x2+y2=1,点A(1,0),P、Q是圆O上异于A的两点.证明:弦PQ是圆O直径的充分必要条件是$\overrightarrow{AP}?\overrightarrow{AQ}=0$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知各面均为等边三角形的四面体的棱长为4,则它的表面积是16$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在等腰梯形PDCB中,PB=3,DC=1,PD=BC=$\sqrt{2}$,AD⊥PB,将△PAD沿AD折起,使平面PAD⊥平面ABCD.

(Ⅰ)若M是侧棱PB中点,求证:CM∥平面PAD;
(Ⅱ)求直线PB与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,正方体ABCD-A1B1C1D1的棱长为2,P为棱CD上的一点,且三棱锥A-CPD1的体积为$\frac{2}{3}$.
(1)求CP的长;
(2)求直线AD与平面APD1所成的角θ的正弦值;
(3)请直接写出正方体的棱上满足C1M∥平面APD1的所有点M的位置,并任选其中的一点予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知焦点在x轴上的土元D:$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{m}$=1,的离心率为$\frac{\sqrt{3}}{3}$,F1,F2分别为左、右焦点,过点P(3,0)作直线交椭圆D于A,B(B在P,A两点之间)两点,且F1A∥F2B,A关于原点O的对称点C.
(1)求椭圆D的方程;
(2)求直线PA的方程;
(3)过F2任作一直线交过A,F1,C三点的圆于E,F两点,求△OEF面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C的焦点在x轴上,左右焦点分别为F1、F2,离心率e=$\frac{1}{2}$,P为椭圆上任意一点,△PF1F2的周长为6.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点S(4,0)且斜率不为0的直线l与椭圆C交于Q,R两点,点Q关于x轴的对称点为Q1,过点Q1与R的直线交x轴于T点,试问△TRQ的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上有一点P,椭圆内一点Q在PF2的延长线上,满足QF1⊥QP,若sin∠F1PQ=$\frac{5}{13}$,则该椭圆离心率取值范围是(  )
A.($\frac{1}{5}$,1)B.($\frac{\sqrt{26}}{26}$,1)C.($\frac{1}{5},\frac{\sqrt{2}}{2}$)D.($\frac{\sqrt{26}}{26},\frac{\sqrt{2}}{2}$)

查看答案和解析>>

同步练习册答案