精英家教网 > 高中数学 > 题目详情
6.等差数列{an}中,a2+a4=2,a3+a5=8,那么它的公差是(  )
A.3B.4C.5D.6

分析 利用等差数列的通项公式直接求解.

解答 解:∵等差数列{an}中,a2+a4=2,a3+a5=8,
∴公差d=$\frac{1}{2}$[(a3+a5)-(a2+a4)]=$\frac{1}{2}(8-2)$=3.
故选:A.

点评 本题考查等差数列的公差的求法,考查等差数列的通项公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知$\overrightarrow a,\overrightarrow b,\overrightarrow c$均为单位向量,且$\overrightarrow a•\overrightarrow b$=0,则($\overrightarrow a+\overrightarrow b+\overrightarrow c$)•($\overrightarrow a+\overrightarrow c$) 的最大值是(  )
A.2+2$\sqrt{2}$B.3+$\sqrt{2}$C.2+$\sqrt{5}$D.1+2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{a}(2-x),(x≤1)}\\{2|x-5|-2,(3≤x≤7)}\end{array}\right.$(a>0且a≠1)的图象上关于直线x=1对称的点有且仅有一对,则实数a的取值范围为$[{\sqrt{3},\sqrt{7}})∪\left\{{\frac{{\sqrt{5}}}{5}}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.《九章算术》中,有鳖臑(biēnào)和刍甍(chúméng)两种几何体,鳖臑是一种三棱锥,四面都是直角三角形,刍甍是一种五面体,其底面为矩形,顶部为一条平行于底面矩形的一边且小于此边的线段.在如图所示的刍甍ABCDFE中,已知平面ADFE⊥平面ABCD,EF∥AD,且四边形ADFE为等腰梯形,$AE=\sqrt{5}$,EF=3,AD=5.
(Ⅰ)试判断四面体A-BDE是否为鳖臑,并说明理由;
(Ⅱ)若AB=2,求平面BDE与平面CDF所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ex+ax-a(a∈R且a≠0)在点(0,f(0))处的切线与直线y=3平行,
(1)求实数a的值,
(2)求此时f(x)在[-2,1]上的最大、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若圆锥的底面半径长为4,高为6,在这个圆锥内有一个内接圆柱,设这个圆柱的高为x,则当x取何值时,圆柱的侧面积最大(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB>1,点E在棱AB上移动,小蚂蚁从点A沿长方体的表面爬到点C1,所爬的最短路程为2$\sqrt{2}$.则该长方体外接球的表面积为6π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若ξ~B(n,p)且E(ξ)=$\frac{4}{3}$,D(ξ)=$\frac{8}{9}$,则P(ξ=1)的值为$\frac{32}{81}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设f(x)=|x-1|+|x+1|.
(1)求f(x)≤2x的解集;
(2)若不等式f(x)≥$\frac{{|{2a+1}|-|{a-1}|}}{|a|}$对任意实数a≠0恒成立,求实数x的取值范围.

查看答案和解析>>

同步练习册答案