分析 (1)根据椭圆的离心率求得a=2b,将点代入椭圆方程,即可求得a和b的值,即可求得椭圆方程;
(2)根据斜率公式,求得kAP•kBP=$\frac{{y}^{2}}{{x}^{2}-16}$,由y2=4($\frac{16-{x}^{2}}{16}$),即可取得kAP•kBP=-$\frac{1}{4}$.
解答 解:(1)由椭圆的离心率e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{3}}{2}$,则a=2b,
将(1,$\frac{\sqrt{15}}{2}$)代入椭圆方程:$\frac{1}{4{b}^{2}}+\frac{15}{4{b}^{2}}=1$,解得:b2=4,则a2=16,
∴椭圆的标准方程:$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$;
(2)设动点P(x,y),A(-4,0),则kAP=$\frac{y}{x+4}$,kBP=$\frac{y}{x-4}$,
∴kAP•kBP=$\frac{{y}^{2}}{{x}^{2}-16}$,
由点P在椭圆上,则y2=4($\frac{16-{x}^{2}}{16}$),
即kAP•kBP=$\frac{{y}^{2}}{{x}^{2}-16}$=$\frac{1}{{x}^{2}-16}$•4•$\frac{16-{x}^{2}}{16}$=-$\frac{1}{4}$,
∴kAP•kBP=-$\frac{1}{4}$.
点评 本题考查椭圆的标准方程的求法,直线的斜率公式,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$) | B. | $\frac{1}{2}$($\overrightarrow{a}$-$\overrightarrow{b}$) | C. | $\frac{1}{2}$($\overrightarrow{b}$-$\overrightarrow{a}$) | D. | $\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 广告费用x(万元) | 1 | 2 | 4 | 5 |
| 销售额y(万元) | 10 | 26 | 35 | 49 |
| A. | 55万元 | B. | 53万元 | C. | 57万元 | D. | 59万元 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com