精英家教网 > 高中数学 > 题目详情
13.已知函数f(1-2x)=4x2+2x,则f(3)=2.

分析 直接利用函数的解析式求解函数值即可.

解答 解:函数f(1-2x)=4x2+2x,则f(3)=f(1-2×(-1))
=4-2=2
故答案为:2.

点评 本题考查函数的解析式的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知三棱柱ABC-A′B′C′如图所示,四边形BCC′B′为菱形,∠BCC′=60°,△ABC为等边三角形,面ABC⊥面BCC′B′,E、F分别为棱AB、CC′的中点.
(Ⅰ)求证:EF∥面A′BC′;
(Ⅱ)求二面角C-AA′-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.直线y=x是曲线y=x3+3x2+ax的切线,则a的值1或$\frac{13}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.f(x)=x2+(m-1)x+1在(0,2)有两个零点,则m的取值范围是-$\frac{3}{2}$<m<-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图所示,正四棱锥P-ABCD中,O为底面正方形的中心,侧棱PA与底面ABCD所成的角的正切值为$\frac{{\sqrt{6}}}{2}$,若E是PB的中点,则异面直线PD与AE所成角的正切值为(  )
A.$\frac{{2\sqrt{10}}}{5}$B.$\frac{{\sqrt{5}}}{5}$C.$\sqrt{5}$D.$\frac{{\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设i 是虚数单位,复数$\frac{2i}{1+i}$对应的点与原点的距离是(  )
A.2B.$\sqrt{2}$C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某学生对函数f( x )=x•cosx的性质进行研究,得出如下的结论:
①函数y=f(x)在[-π,0]上单调递增,在[0,π]上单调递减;
②点($\frac{π}{2}$,0)是函数y=f(x)图象的一个对称中心;
③函数y=f(x)图象关于直线x=π对称;
④存在常数M>0,使|f(x)|≤M|x|对一切实数x 均成立.其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果一个几何体的主(正)视图,左(侧)视图,俯视图都是全等的图形,那么称这个几何体为“完美几何体”.在下面选项中,可以由“完美几何体”组成的选项是(  )
A.正方体、球、侧棱两两垂直且相等的正三棱锥
B.正方体、球、各棱长都相等的正三棱柱
C.球、高和底面半径相等的圆柱、高和底面半径相等的圆锥
D.正方体、正四棱台、棱长相等的平行六面体

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.f(x)=$\left\{\begin{array}{l}-\frac{2}{x},x<0\\ 3+log_2x,x>0\end{array}$若f(x)=2,则x=(  )
A.-1B.$\frac{1}{2}$C.-1或1D.-1或$\frac{1}{2}$

查看答案和解析>>

同步练习册答案