精英家教网 > 高中数学 > 题目详情
16.已知变量x,y满足关系y=0.2x-1,变量y与z负相关,则下列结论正确的是(  )
A.x与y正相关,x与z负相关B.x与y负相关,x与z正相关
C.z与y正相关,x与z正相关D.x与y负相关,x与z负相关

分析 根据回归方程中,变量系数之间的关系,进行求解即可.

解答 解:变量x,y满足关系y=0.2x-1,
则变量y与z正相关,
∵变量y与z负相关,
∴变量x与z负相关,
故选:A.

点评 本题主要考查回归方程的应用,根据回归方程,以及变量之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.如表提供的是两个具有线性相关的数据,现求得回归方程为$\widehat{y}$=0.7x+0.35,则t等于(  )
x3456
y2.5t44.5
A.4.5B.3.5C.3.15D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设M,N分别为三棱锥P-ABC的棱AB,PC的中点,三棱锥P-ABC的体积记为V1,三棱锥P-AMN的体积记为V2,则$\frac{{V}_{2}}{{V}_{1}}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.班主任想对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.
(1)如果按性别比例分层抽样,男女生各抽取多少位才符合抽样要求?
(2)随机抽出8位,他们的数学、地理成绩对应如表:
学生编号12345678
数学分数x6065707580859095
地理分数y7277808488909395
①若规定85分以上(包括85分)为优秀,在该班随机调查一位同学,他的数学和地理分数均为优秀的概率;
②根据如表,用变量y与x的相关系数或散点图说明地理成绩y与数学成绩x之间线性相关关系的强弱.如果有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01),如果不具有线性相关关系,请说明理由.
参考公式:
相关系数r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{{{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}^{\;}}^{\;}}$;回归直线的方程是:$\stackrel{∧}{y}$=b$\stackrel{∧}{x}$+a,
其中:b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$,$\overline{y}$是xi对应的回归估计值.
参考数据:$\overline{x}$≈77.5,$\overline{y}$≈84.9,$\sum_{i=1}^{8}({x}_{i}-\overline{x})^{2}$=1050,$\sum_{i=1}^{8}({y}_{i}-\overline{y})^{2}$≈456.9,$\sum_{i=1}^{8}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$≈687.5,$\sqrt{1050}$≈32.4,$\sqrt{456.9}$≈21.4,$\sqrt{550}$≈23.5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一排路灯共10盏,关闭其中3盏且不相邻,有多少种不同的情况.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.将一枚硬币连续抛掷5次,求正面向上的次数X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知随机变量ξ的分布列为
 ξ 0
 P 0.10.2 0.3 0.1 
则x=0.3,P(1≤ξ<3)=0.5,E(ξ)=2.1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,则该几何体的体积为12+8π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.一台机器在一天内发生故障的概率为0.1,若这台机器一周5个工作日不发生故障,可获利5万元;发生1次故障仍可获利2.5万元;发生2次故障的利润为0元;发生3次或3次以上故障要亏损1万元,这台机器一周内可能获利的均值是多少?

查看答案和解析>>

同步练习册答案