精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|
3
2
-x|.
(Ⅰ)求不等式f(x)≤
5
2
的解集;
(Ⅱ)如果存在x∈[-2,4],使不等式f(x)+f(x+2)≥m成立,求实数m的取值范围.
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:(Ⅰ)不等式即|x-
3
2
|≤
5
2
,即-
5
2
≤x-
3
2
5
2
,由此求得不等式的解集.
(Ⅱ)令g(x)=f(x)+f(x+2)=|x-
3
2
|+|x+
1
2
|=
1-2x , x≤-
1
2
2  , -
1
2
<x≤
3
2
2x-1  ,x>
3
2
,分类讨论求得g(x)在[-2,4]上的最大值,即可得到m的范围.
解答: 解:(Ⅰ)不等式f(x)≤
5
2
,即|x-
3
2
|≤
5
2
,即-
5
2
≤x-
3
2
5
2
,求得-1≤x≤4,
故不等式的解集为[-1,4].
(Ⅱ)令g(x)=f(x)+f(x+2)=|x-
3
2
|+|x+
1
2
|=
1-2x , x≤-
1
2
2  , -
1
2
<x≤
3
2
2x-1  ,x>
3
2

由题意可得g(x)在[-2,4]上的最大值大于或等于m.
当x∈[-2,-
1
2
]时,g(x)为减函数,故g(x)≤g(-2)=5.
当x∈[-
1
2
 4]时,g(x)的最大值为g(4)=7,故 g(x)在∈[-2,4]上的最大值为7,由题意可得m≤7,
即m的范围是(-∞,7].
点评:本题主要考查绝对值不等式的解法,带由绝对值的函数,体现了转化、分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

AC
可以写成①
AO
+
OC
;②
AO
-
OC
;③
OA
-
OC
;④
OC
-
OA
.其中正确的是(  )
A、①②B、②③C、③④D、①④

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
c
为非零向量,已知向量
a
b
不共线,
a
c
共线,则向量
b
c
(  )
A、一定不共线B、一定共线
C、不一定共线D、可能相等

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元) 8 8.2 8.4 8.6 8.8 9
销量y(件) 90 84 83 80 75 68
由散点图可知,销售量y与价格x之间有较好的线性相关关系,其线性回归直线方程是:
y
=-20x+a
(Ⅰ)求a的值;
(Ⅱ)预计在今后的销售中,销量与单价仍然服从线性回归直线方程中的关系,且该产品的成本是每件4元,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入一成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,a,b,c分别为角A,B,C所对应的边,b=3,bcosC+ccosB=
2
asinA.
(1)求A的值;
(2)若△ABC的面积S=3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的三个内角A、B、C所对的边分别是a,b,c;asinAsinB+bcos2A=
2
a
(1)求
b
a

(2)若c=
3
,b=
2
,求cosB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

有5个男生和3个女生,从中选取5人担任5门不同学科的科代表,求分别符合下列条件的选法数:
(1)有女生但人数必须少于男生.
(2)某女生一定要担任语文科代表.
(3)某男生必须包括在内,但不担任数学科代表.
(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2x(x≥1)的反函数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中内角A、B、C的对边分别为a、b、c,且2acosC=2b-c.
(Ⅰ)求角A的大小;
(Ⅱ)如果a=1,求b+c的取值范围.

查看答案和解析>>

同步练习册答案