分析 如果p∨q为真,p∧q为假,则p,q只能一真一假,进而得到答案.
解答 解:由函数y=(2c-1)x在R上单调递减可得,0<2c-1<1,解得$\frac{1}{2}<c<1$.
设函数$f(x)=x+|x-2c|=\left\{{\begin{array}{l}{2x-2c,x≥2c}\\{2c,\begin{array}{l}{\;}&{x<c}\end{array}}\end{array}}\right.$,可知f(x)的最小值为2c,
要使不等式x+|x-2c|>1的解集为R,只需$2c>1,c>\frac{1}{2}$,
因为p或q为真,p且q为假,所以p,q只能一真一假,
当p真q假时,有$\left\{{\begin{array}{l}{\frac{1}{2}<c<1}\\{c≤\frac{1}{2}}\end{array}}\right.$,无解;
当p假q真时,有$\left\{{\begin{array}{l}{0≤c≤\frac{1}{2},c≥1}\\{c>\frac{1}{2}}\end{array}}\right.$,可得c≥1,
综上,c的取值范围为c≥1.
点评 本题以命题的真假判断与应用为载体,考查了指数函数的单调性,不等式恒成立问题,复合命题,难度中档.
科目:高中数学 来源: 题型:选择题
| A. | c>b>a | B. | c>a>b | C. | a>b>c | D. | b>a>c |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 空间中两组对边分别相等的四边形为平行四边形 | |
| B. | 所有梯形都有外接圆 | |
| C. | 所有的质数的平方都不是偶数 | |
| D. | 不存在一个奇数,它的立方是偶数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (18,17,-17) | B. | (-14,-19,17) | C. | $({6,\frac{7}{2},1})$ | D. | $({-2,-\frac{11}{2},13})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 23 | B. | 24 | C. | $\frac{{24\sqrt{17}}}{17}-1$ | D. | $\frac{{24\sqrt{17}}}{17}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com