精英家教网 > 高中数学 > 题目详情
5.设非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|则(  )
A.$\overrightarrow{a}$⊥$\overrightarrow{b}$B.|$\overrightarrow{a}$|=|$\overrightarrow{b}$|C.$\overrightarrow{a}$∥$\overrightarrow{b}$D.|$\overrightarrow{a}$|>|$\overrightarrow{b}$|

分析 由已知得$(\overrightarrow{a}+\overrightarrow{b})^{2}=(\overrightarrow{a}-\overrightarrow{b})^{2}$,从而$\overrightarrow{a}•\overrightarrow{b}$=0,由此得到$\overrightarrow{a}⊥\overrightarrow{b}$.

解答 解:∵非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,
∴$(\overrightarrow{a}+\overrightarrow{b})^{2}=(\overrightarrow{a}-\overrightarrow{b})^{2}$,
解得$\overrightarrow{a}•\overrightarrow{b}$=0,
∴$\overrightarrow{a}⊥\overrightarrow{b}$.
故选:A.

点评 本题考查两个向量的关系的判断,是基础题,解题时要认真审题,注意向量的模的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.产品中有正品4件,次品3件,从中任取2件:
①恰有一件次品和恰有2件次品;
②至少有1件次品和全都是次品;
③至少有1件正品和至少有一件次品;
④至少有一件次品和全是正品.
上述四组事件中,互为互斥事件的组数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow{a}$=(2,6),$\overrightarrow{b}$=(-1,λ),若$\overrightarrow{a}∥\overrightarrow{b}$,则λ=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|x<2},B={x|3-2x>0},则(  )
A.A∩B={x|x<$\frac{3}{2}$}B.A∩B=∅C.A∪B={x|x<$\frac{3}{2}$}D.AUB=R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.曲线y=x2+$\frac{1}{x}$在点(1,2)处的切线方程为x-y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,f(x)=2x3+x2,则f(2)=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|x<1},B={x|3x<1},则(  )
A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1}D.A∩B=∅

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{9}=1$(a>0)的一条渐近线方程为y=$\frac{3}{5}$x,则a=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.给出下列三个命题:
①若回归直线的斜率估计值是1.23,样本点的中心为(4,5),则回归直线方程是$\widehaty=1.23x+0.08$;
②若偶函数f(x)(x∈R)满足f(x+1)=-f(x),且x∈[0,1]时,f(x)=x,则方程f(x)=log3|x|有3个根;
③已知函数f(x)=($\frac{3}{2}$)x-sinx-1在[0,+∞)内只有两个零点.
正确命题的序号是①③(把你认为正确命题的序号都填上)

查看答案和解析>>

同步练习册答案