精英家教网 > 高中数学 > 题目详情
3.已知tanα=2.
(1)求tan(α+$\frac{π}{4}$)的值;        
(2)求$\frac{sin2α}{{1-{{sin}^2}α}}$的值.

分析 (1)由题意利用两角和的正切公式,求得tan(α+$\frac{π}{4}$)的值.
(2)利用同角三角函数的基本关系,二倍角公式化简$\frac{sin2α}{{1-{{sin}^2}α}}$,再把tanα=2 代入,计算可得$\frac{sin2α}{{1-{{sin}^2}α}}$的值.

解答 解:(1)∵tanα=2,∴tan(α+$\frac{π}{4}$)=$\frac{1+tanα}{1-tanα}$=$\frac{1+2}{1-2}$=-3.
(2)∵tanα=2,∴$\frac{sin2α}{{1-{{sin}^2}α}}$=$\frac{2sinαcosα}{{cos}^{2}α}$=2tanα=4.

点评 本题主要考查两角和的正切公式,同角三角函数的基本关系,二倍角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若AB,AC,AD两两互相垂直,且AB=5,AC=4,AD=3,则三棱锥A-BCD的体积为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.《九章算术》中,有鳖臑(biēnào)和刍甍(chúméng)两种几何体,鳖臑是一种三棱锥,四面都是直角三角形,刍甍是一种五面体,其底面为矩形,顶部为一条平行于底面矩形的一边且小于此边的线段.在如图所示的刍甍ABCDFE中,已知平面ADFE⊥平面ABCD,EF∥AD,且四边形ADFE为等腰梯形,$AE=\sqrt{5}$,EF=3,AD=5.
(Ⅰ)试判断四面体A-BDE是否为鳖臑,并说明理由;
(Ⅱ)若AB=2,求平面BDE与平面CDF所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若圆锥的底面半径长为4,高为6,在这个圆锥内有一个内接圆柱,设这个圆柱的高为x,则当x取何值时,圆柱的侧面积最大(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB>1,点E在棱AB上移动,小蚂蚁从点A沿长方体的表面爬到点C1,所爬的最短路程为2$\sqrt{2}$.则该长方体外接球的表面积为6π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数 f(x)=sinx(cosx-$\sqrt{3}$sinx).
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)在[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若ξ~B(n,p)且E(ξ)=$\frac{4}{3}$,D(ξ)=$\frac{8}{9}$,则P(ξ=1)的值为$\frac{32}{81}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知定义在R上的函数f(x),若对任意两个不相等的实数x1,x2,都有x1f(x1)+x2f(x2)<x1f(x2)+x2f(x1),则称函数f(x)为“D函数”.给出以下四个函数:①f(x)=ex+x;②f(x)=-x3-2x;③f(x)=e-x;④f(x)=$\left\{\begin{array}{l}{ln|x|,x≠0}\\{0,x=0}\end{array}\right.$,其中“D函数”的序号为(  )
A.①②B.①③C.②③D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.sin(π+α)等于(  )
A.sinαB.-sinαC.cosαD.-cosα

查看答案和解析>>

同步练习册答案