精英家教网 > 高中数学 > 题目详情
9.已知直线l是曲线C1:y=x2与曲线C2:y=lnx,x∈(0,1)的一条公切线,若直线l与曲线C1的切点为P,则点P的横坐标t满足(  )
A.0<t<$\frac{1}{2}$B.$\frac{1}{2}$<t<1C.$\frac{\sqrt{2}}{2}$<t<$\sqrt{2}$D.$\sqrt{2}$<t<$\sqrt{3}$

分析 设P(t,t2),切线与曲线C2的交点为(s,lns)(0<s<1),分别求得函数的导数和切线的斜率及方程,运用两直线重合的条件,消去s,可得t2-ln(2t)-1=0,令f(t)=t2-ln(2t)-1,t>$\frac{1}{2}$,再由零点存在定理,即可判断t的范围.

解答 解:设P(t,t2),切线与曲线C2的交点为(s,lns)(0<s<1),
y=x2的导数为y′=2x,即有切线的斜率为2t,
可得直线l的方程为y-t2=2t(x-t),即为y=2tx-t2
y=lnx的导数为y′=$\frac{1}{x}$,即有切线的斜率为$\frac{1}{s}$,
可得切线的方程为y-lns=$\frac{1}{s}$(x-s),即为y=$\frac{1}{s}$x+lns-1.
则有2t=$\frac{1}{s}$,-t2=lns-1,0<s<1,t>$\frac{1}{2}$,
可得t2-ln(2t)-1=0,令f(t)=t2-ln(2t)-1,
f′(t)=2t-$\frac{1}{t}$=$\frac{2(t-\frac{\sqrt{2}}{2})(t+\frac{\sqrt{2}}{2})}{t}$,
即有f(t)在($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$)递减,在($\frac{\sqrt{2}}{2}$,+∞)递增,
由f($\sqrt{2}$)=2-ln(2$\sqrt{2}$)-1<0,f($\sqrt{3}$)=3-ln(2$\sqrt{3}$)-1>0,
可得f(t)在($\sqrt{2}$,$\sqrt{3}$)内存在一个零点.
故选:D.

点评 本题考查导数的运用:求切线的方程和单调区间,考查直线方程的运用,以及函数方程的转化思想和函数零点存在定理的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知数列{an}中,a1=1,(n2+2n)an-n2an-1=0(n∈N*,n≥2),则an=$\frac{6}{(n+1)(n+2)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知sinαcosα=$\frac{1}{8}$,且α是第三象限角.
求$\frac{{1-{{cos}^2}α}}{{cos(\frac{3π}{2}-α)+cosα}}$+$\frac{{sin(α-\frac{7π}{2})+sin(2017π-α)}}{{{{tan}^2}α-1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.(1-x+x210的展开式中x3的系数为(  )
A.-30B.30C.-210D.210

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义在R上的奇函数,当x>0时,f(x)=alnx+$\frac{1}{ax}$(a>0),且函数f(x)在x=1处的切线斜率为$\frac{3}{2}$,则方程f(x)=0的实数根的个数为(  )
A.0B.2C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=x-lnx在其极值点处的切线方程为y=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等腰三角形的一个底角的正弦等于$\frac{5}{13}$,则这个三角形顶角的余弦值为(  )
A.-$\frac{119}{169}$B.$\frac{119}{169}$C.$\frac{120}{169}$D.-$\frac{119}{169}$或$\frac{119}{169}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2$\sqrt{3}$sin($\frac{1}{2}$ωx)•cos($\frac{1}{2}$ωx)+2cos2($\frac{1}{2}$ωx)(ω>0),且函数f(x)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求f(x)在区间$[0,\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若$\overrightarrow{a}$为非零向量,且$\overrightarrow{b}$=$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$,$\overrightarrow{c}$=(cosθ,sinθ),则向量$\overrightarrow{b}$与$\overrightarrow{c}$一定满足(  )
A.$\overrightarrow{b}$∥$\overrightarrow{c}$B.($\overrightarrow{b}$+$\overrightarrow{c}$)⊥($\overrightarrow{b}$-$\overrightarrow{c}$)C.$\overrightarrow{b}$+$\overrightarrow{c}$=$\overrightarrow{a}$D.$\overrightarrow{b}$•$\overrightarrow{c}$=0

查看答案和解析>>

同步练习册答案