精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,且满足Sn=-
1
2
an-
1
2
(n∈N*
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=
n
an+1
,证明:对于一切正整数n,不等式b1×b2×b3×…×bn<2×n!恒成立.
考点:数学归纳法,数列的求和
专题:证明题,点列、递归数列与数学归纳法
分析:(1)由Sn=-
1
2
an-
1
2
①,知Sn-1=-
1
2
an-1-
1
2
(n≥2)②,两式相减后整理后,易证数列{an}为以a1=-
1
3
为首项,
1
3
为公比的等比数列,从而可求数列{an}的通项公式;
(2)由bn=
n
an+1
=
n
1-
1
3n
(n∈N*),可知b1×b2×b3×…×bn=
n!
(1-
1
3
)(1-
1
32
)(1-
1
33
)×…×(1-
1
3n
)
,要证b1×b2×b3×…×bn<2×n!,只要证(1-
1
3
)(1-
1
32
)…(1-
1
3n
)>
1
2
,利用数学归纳法证明即可.
解答: 解:(1)由Sn=-
1
2
an-
1
2
①,
得Sn-1=-
1
2
an-1-
1
2
(n≥2)②,
由①-②,得an=-
1
2
an+
1
2
an-1,即3an=an-1(n≥2).
由S1=-
1
2
a1-
1
2
,得a1=-
1
3

∴数列{an}为以a1=-
1
3
为首项,
1
3
为公比的等比数列,
即an=-
1
3
(
1
3
)
n-1
=-(
1
3
)
n
(n∈N*).
(2)证明:由
bn=
n
an+1
=
n
1-
1
3n
(n∈N*),
得:b1×b2×b3×…×bn=
1×2×3×…×n
(1-
1
3
)(1-
1
32
)(1-
1
33
)×…×(1-
1
3n
)
=
n!
(1-
1
3
)(1-
1
32
)(1-
1
33
)×…×(1-
1
3n
)

因此,要证b1×b2×b3×…×bn<2×n!,
只要证(1-
1
3
)(1-
1
32
)…(1-
1
3n
)>
1
2

下面用数学归纳法先证明(1-
1
3
)(1-
1
32
)…(1-
1
3n
)≥1-(
1
3
+
1
32
+…+
1
3n
)(n∈N*).
①当n=1,不等式左边=
2
3
,右边=
2
3

∴不等式成立;           
②设n=k(k≥1,k∈N*)时,不等式成立,
即(1-
1
3
)(1-
1
32
)…(1-
1
3k
)≥1-(
1
3
+
1
32
+…+
1
3k
)(k∈N*),
则当n=k+1时,
左边=(1-
1
3
)(1-
1
32
)…(1-
1
3k
)(1-
1
3k+1
)≥[1-(
1
3
+
1
32
+…+
1
3k
)](1-
1
3k+1
),
而[1-(
1
3
+
1
32
+…+
1
3k
)]•(1-
1
3k+1
)=1-
1
3k+1
-(
1
3
+
1
32
+…+
1
3k
)+
1
3k+1
1
3
+
1
32
+…+
1
3k
)≥1-(
1
3
+
1
32
+…+
1
3k
+
1
3k+1
),
即n=k+1时,不等式也成立.
综合①②,(1-
1
3
)(1-
1
32
)…(1-
1
3n
)≥1-(
1
3
+
1
32
+…+
1
3n
)(n∈N*).成立.
又1-(
1
3
+
1
32
+…+
1
3n
)=1-
1
3
(1-
1
3n
)
1-
1
3
=
1
2
+
1
2×3n
1
2

∴(1-
1
3
)(1-
1
32
)…(1-
1
3n
)>
1
2
.成立.
从而b1×b2×b3×…×bn<2×n!成立.
点评:本题考查递推数列,考查数列等比关系的确定,着重考查数学归纳法的应用,考查分析法,推理与证明的能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

公务员考试分笔试和面试,笔试的通过率为20%,最后的录取率为4%,已知某人已经通过笔试,则他最后被录取的概率为(  )
A、20%B、24%
C、16%D、4%

查看答案和解析>>

科目:高中数学 来源: 题型:

M是抛物线y2=4x上一点,且在x轴上方,F是抛物线的焦点,以x轴的正半轴为始边,FM为终边构成的角为∠xFM=60°,则|FM|=(  )
A、2B、3C、4D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为y=-x2,值域为{-1,-9}的“同族函数”共有(  )
A、7个B、8个C、9个D、10个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|a-1|+|y-1|>a(a>1),求y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:米).
(1)将修建围墙的总费用y表示成x的函数;
(2)写出函数f(x)=y的单调区间,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数且f(1)=1,若a,b∈[-1,1],a+b≠0,有
f(a)+f(b)
a+b
>0

(1)判断函数f(x)在[-1,1]上是增函数还是减函数,并用定义证明你的结论.
(2)解不等式f(x+
1
2
)>f(2x-
1
2
)

(3)若f(x)≤m2-2am+1对所有x∈[-1,1]、a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x+3|-m,m∈R,且f(x-2)≤0的解集为[-3,1].
(Ⅰ)求m的值;
(Ⅱ)已知a,b,c都是正数,且a+b+c=m,求证:
1
a+b
+
1
b+c
+
1
c+a
9
4

查看答案和解析>>

科目:高中数学 来源: 题型:

①一个命题的逆命题为真,它的否命题也一定为真;
②在△ABC中,“∠B=60°”是“∠A,∠B,∠C三个角成等差数列”的充要条件.
x>1
y>2
x+y>3
xy>2
的充要条件;
④“am2<bm2”是“a<b”的充分必要条件.
以上说法中,判断正确的有
 

查看答案和解析>>

同步练习册答案