精英家教网 > 高中数学 > 题目详情
在△ABC中,cos(A+
π
4
)=
3
5
,则cos2A=
 
考点:两角和与差的余弦函数
专题:三角函数的求值
分析:根据余弦函数的倍角公式,以及三角函数的诱导公式将条件进行化简,即可得到结论.
解答: 解:cos2A=sin(2A+
π
2
)=2sin(A+
π
4
)cos(A+
π
4
),
在△ABC中,cos(A+
π
4
)=
3
5
>0,
∴0<A+
π
4
π
2

∴sin(A+
π
4
)=
4
5

∴cos2A=sin2(A+
π
4
)=2sin(A+
π
4
)cos(A+
π
4
)=2×
3
5
×
4
5
=
24
25

故答案为:
24
25
点评:本题主要考查三角函数的求值,利用诱导公式以及三角函数的倍角公式是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理科做)如图,四棱锥P-ABCD的底面ABCD是直角梯形,∠ABC=90°,BC∥AD,且AB=AD=2BC,顶点P在底面ABCD内的射影恰好落在AB的中点O上.
(1)求证:PD⊥AC;
(2)若PO=AB,求直线PD与AB所成角的余弦值;
(3)若平面APB与平面PCD所成的二面角为45°,求
PO
BC
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

y=sin(ωx+φ),ω>0与y=a函数图象相交有相邻三点,从左到右为P、R、Q,若PR=3RQ,则a的值
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
3
-y2=1的焦点到它的渐近线的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F∥平面D1AE,则A1F与平面BCC1B1所成角的正切值的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

与双曲线x2-y2=1过一、三象限的渐近线平行且距离为
2
的直线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1中,直线DB1与平面ABCD所成角的正弦值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:-4<x-a<4,命题q:(x-1)(x-3)<0,且q是p的充分而不必要条件,则a的取值范围是(  )
A、[-1,5]
B、[-1,5)
C、(-1,5]
D、(-1,5)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|2x+1|+|2x-3|.
(Ⅰ)求不等式f(x)≤6的解集;
(Ⅱ)若关于x的不等式f(x)-log2(a2-3a)>2恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案