精英家教网 > 高中数学 > 题目详情
在正方体ABCD-A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F∥平面D1AE,则A1F与平面BCC1B1所成角的正切值的取值范围是
 
考点:直线与平面所成的角
专题:空间角
分析:设平面AD1E与直线BC交于点G,连接AG、EG,则G为BC的中点.分别取B1B、B1C1的中点M、N,连接AM、MN、AN,可证出平面A1MN∥平面D1AE,从而得到A1F是平面A1MN内的直线.由此将点F在线段MN上运动并加以观察,即可得到A1F与平面BCC1B1所成角取最大值、最小值的位置,由此不难得到A1F与平面BCC1B1所成角的正切取值范围.
解答: 解:解答:解:设平面AD1E与直线BC交于点G,连接AG、EG,则G为BC的中点
分别取B1B、B1C1的中点M、N,连接AM、MN、AN,则
∵A1M∥D1E,A1M?平面D1AE,D1E?平面D1AE,
∴A1M∥平面D1AE.同理可得MN∥平面D1AE,
∵A1M、MN是平面A1MN内的相交直线
∴平面A1MN∥平面D1AE,
由此结合A1F∥平面D1AE,
可得直线A1F?平面A1MN,即点F是线段MN上上的动点.
设直线A1F与平面BCC1B1所成角为θ
运动点F并加以观察,可得
当F与M(或N)重合时,A1F与平面BCC1B1所成角等于∠A1MB1
此时所成角θ达到最小值,满足tanθ=
A1B1
B1M
=2;
当F与MN中点重合时,A1F与平面BCC1B1所成角达到最大值,
满足tanθ=
A1B1
2
2
B1M
=2
2

∴A1F与平面BCC1B1所成角的正切取值范围为[2,2
2
]
故答案为:[2,2
2
].
点评:本题给出正方体中侧面BCC1B1内动点F满足A1F∥平面D1AE,求A1F与平面BCC1B1所成角的正切取值范围,着重考查了正方体的性质、直线与平面所成角、空间面面平行与线面平行的位置关系判定等知识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinxcosx+cos2x+1(x∈R).
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)求函数f(x)在[-
π
4
π
4
]上的最小值,并写出f(x)取最小值时相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1,截去三个角A-BDA1,C-BDC1,B1-BA1C1后形成的几何体的体积与原正方体的体积之比值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

y=
1
2x+1
(1<x<3)
的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线x2+y2=9上各点的横坐标保持不变,纵坐标缩短为原来的一半,则所得曲线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,cos(A+
π
4
)=
3
5
,则cos2A=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系内,到点(1,0)和直线x=-1距离相等的点的轨迹方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

长方体三个面的面对角线的长度分别为3,3,
14
那么它的外接球的表面积为(  )
A、8πB、16π
C、32πD、64π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的导函数为f′(x),且对任意x>0,都有f′(x)>
f(x)
x

(Ⅰ)判断函数F(x)=
f(x)
x
在(0,+∞)上的单调性;
(Ⅱ)设x1,x2∈(0,+∞),证明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)请将(Ⅱ)中的结论推广到一般形式,并证明你所推广的结论.

查看答案和解析>>

同步练习册答案