精英家教网 > 高中数学 > 题目详情
已知a,b是正数,且a+b=1,求证:(ax+by)(bx+ay)≥xy.
考点:基本不等式
专题:不等式的解法及应用
分析:展开(ax+by)(bx+ay)利用基本不等式的性质即可得出.
解答: 证明:∵a,b是正数,且a+b=1,
∴(ax+by)(bx+ay)=abx2+(a2+b2)xy+aby2
=ab(x2+y2)+(a2+b2)xy  
≥ab?2xy+(a2+b2)xy  
=(a+b)2xy
=xy
即(ax+by)(bx+ay)≥xy成立.
点评:本题考查了基本不等式的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设x,y,z∈R,且x+2y+3z=1
(1)当z=1,|x+y|+|y+1|>2时,求x的取值范围;
(2)当x,y,z∈R+时,求u=
x2
x+1
+
4y 2
2y+1
+
9z2
3z+1
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设sinα、cosα是关于x的方程2x2+4kx+3k=0的两个实数根,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c的图象在点(1,f(1))的切线l过点(0,c-1)
(1)求a的值
(2)当b=2c>0时,函数F(x)=x[f(x)+c2-c]对任意x1,x2∈[-c,c],不等式|F(x1)-F(x2)|≤
1
3
c恒成立,求c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建造单价每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁忽略不计).问污水处理池的长设计为多少米时,可使总造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,A,B为单位圆O上的两点,且点A(1,0),B(
1
2
3
2
),点P为弧AB(不包括端点A,B)上的动点,点P(cosθ,sinθ),OP∩AB=C,且
AC
AB

(Ⅰ)求λ(用θ表示);
(Ⅱ)若
OC
AC
=-
1
16
时,求tanθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=arccosx,x∈[0,1]的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x
1-x
(x≠0且x≠1),则f(x)+f(
1
x
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx,有以下4个命题
①对任意的x1、x2∈(0,+∞),有f(
x1+x2
2
)≤
f(x1)+f(x2)
2

②对任意的x1、x2∈(1,+∞),且x1<x2,有f(x1)-f(x2)<x2-x1
③对任意的x1、x2∈(e,+∞),且x1<x2有x1f(x2)<x2f(x1);
④对任意的0<x1<x2,总有x0∈(x1,x2),使得f(x0)≤
f(x1)-f(x2)
x1-x2

其中正确的是
 
(填写序号).

查看答案和解析>>

同步练习册答案