精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sinxcosx+cos2x.
(1)求f(
π
4
)的值;
(2)设α∈(0,π),f(
α
2
)=
2
2
,求α的值.
考点:三角函数中的恒等变换应用
专题:三角函数的求值
分析:(1)将三角函数进行化简,即可求f(
π
4
)的值;
(2)根据f(
α
2
)=
2
2
,建立条件关系,即可求α的值.
解答: 解:f(x)=2sinxcosx+cos2x=sin2x+cos2x=
2
sin(2x+
π
4

(1)f(
π
4
)=
2
sin(2×
π
4
+
π
4
)=
2
cos
π
4
=
2
×
2
2
=1
(2)∵f(
α
2
)=
2
2
,∴
2
sin(α+
π
4
)=
2
2
∴sin(α+
π
4
)=
1
2

∵α∈(0,π),
∴α+
π
4
=
6

∴α=
12
点评:本题主要考查三角函数值的计算,利用三角函数的三角公式进行化简是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a2=4,an=4an-1-3an-2(n≥3)
(1)求a4的值;
(2)证明:数列{an-an-1}(n≥2)是等比数列;
(3)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a<10且a∈N,是否存在满足条件的a,使得
a2
4
+1
+
a-1
是整数?若存在,求出a;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,AB、AC是⊙O的切线,B、C为切点,ADE是⊙O的割线.

(1)求证:CD•AE=AB•CE;
(2)在图1中,使线段AC绕A旋转,得到图2,(1)的结论还成立吗?若成立,请证明;若不成立,说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,命题p:函数f(x)=ax+b在(-∞,+∞)上单调递增,命题q:关于x的方程x2+2x+a=0的解集不空,若p∨(¬q)为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

点P(x0,y0)在椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上,x0=acosβ,y0=bsinβ,0<β<
π
2
.直线l2与直线l1
x0
a2
x+
y0
b2
y=1
垂直,O为坐标原点,直线OP的倾斜角为α,直线l2的倾斜角为γ
(Ⅰ)证明:点P是椭圆
x2
a2
+
y2
b2
=1
与直线l1的唯一交点;
(Ⅱ)证明:tanα,tanβ,tanγ构成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cos
x
2
,1+tan2x),
b
=(
2
sinx(
x
2
+
x
4
),cos2x),f(x)=
a
b

(1)求f(x)在(0,
π
2
]上的单调增区间;
(2)若f(α)=
5
2
,α∈(
π
2
,π),求f(-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
ax2-(2a+1)x+2lnx+1(a≤
1
2
).
(Ⅰ)若曲线y=f(x)在x=1处的切线与直线2x-3y+1=0平行,求a的值;
(Ⅱ)讨论f(x)的单调性;
(Ⅲ)设函数g(x)=x2-2x,若对任意x1∈(0,2],均存在x2∈(0,2]使得f(x1)<g(x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=25,S17=S9
(1)求{an}的通项公式;
(2)这个数列的前多少项的和最大?并求出这个最大值.

查看答案和解析>>

同步练习册答案