精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=loga(x-1)+4(a>0且a≠1)恒过定点P,若点P也在幂函数g(x)的图象上,则g(4)=16.

分析 由loga1=0得x-1=1,求出x的值以及y的值,即求出定点的坐标.再设出幂函数的表达式,利用点在幂函数的图象上,求出α的值,然后求出幂函数的表达式即可得出答案.

解答 解:∵loga1=0,
∴当x-1=1,即x=2时,y=4,
∴点M的坐标是P(2,4).
幂函数g(x)=xα的图象过点M(2,4),
所以4=2α,解得α=2;
所以幂函数为g(x)=x2
则g(4)=16.
故答案为:16.

点评 本题考查对数函数的性质和特殊点,主要利用loga1=0,考查求幂函数的解析式,同时考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=2ax2-x3(a>1)在区间(0,1]上是增函数,则实数a的取值范围是[$\frac{3}{4},+∞$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是(  )
A.?x0∈R,f(x0)=0
B.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)上单调递减
C.函数f(x)的图象是中心对称图形
D.若x0是f(x)的极值点,则f′(x0)=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=4sin(ωx+φ)对任意的x都有f(${\frac{π}{3}$+x)=f(-x),则f($\frac{π}{6}}$)=(  )
A.0B.-4或0C.4或0D.-4或4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.$sin\frac{2015π}{3}$=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=ln(-x2-2x+8)的单调递减区间是(  )
A.(-∞,-1)B.(-1,2)C.(-4,-1)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知长方形ABCD中,AD=$\frac{1}{2}$AB=a,M为CD的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM,点O是线段AM的中点.
(1)求证:AD⊥BM;
(2)若三棱锥C-BMD的高为2,求a的值和△CDM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知tanα=$\frac{1}{3}$,则$\frac{1+cos2α}{sin2α}$=(  )
A.-$\frac{1}{3}$B.$\frac{1}{3}$C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.一批产品共10件,其中3件是不合格品,用下列两种不同方式从中随机抽取2件产品检验:
方式一:一次性随机抽取2件;
方式二:先随机抽取1件,放回后再随机抽取1件;
记抽取的不合格产品数为ξ.
(1)分别求两种抽取方式下ξ的概率分布;
(2)比较两种抽取方式抽到的不合格品平均数的大小?并说明理由.

查看答案和解析>>

同步练习册答案