精英家教网 > 高中数学 > 题目详情
15.抛物线y=3-x2与直线y=2x与所围成图形(图中的阴影部分)的面积为(  )
A.10B.$\frac{31}{3}$C.11D.$\frac{32}{3}$

分析 联解方程组,得直线与抛物线交于点A(-3,-6)和B(1,2),因此求出函数3-x2-2x在区间[-3,1]上的定积分值,就等于所求阴影部分的面积,接下来利用积分计算公式和法则进行运算,即可得到本题的答案.

解答 解:由抛物线y=3-x2与直线y=2x联立,
解得交于点A(-3,-6)和B(1,2)
∴两图象围成的阴影部分的面积为S=${∫}_{-3}^{1}$(3-x2-2x)dx=$(3x-\frac{1}{3}{x}^{3}-{x}^{2}){|}_{-3}^{1}$
=(3×1-$\frac{1}{3}$×13-12)-[3×(-3)-$\frac{1}{3}$×(-3)3-(-3)2]
=$\frac{32}{3}$,
故选:D.

点评 本题求直线与抛物线围成的阴影部分图形的面积,着重考查了定积分计算公式和定积分的几何意义等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知平面向量$\overrightarrow a$与$\overrightarrow b$的夹角等于$\frac{5π}{6}$,如果|${\overrightarrow a}$|=4,|${\overrightarrow b}$|=$\sqrt{3}$,那么|2$\overrightarrow a$-$\overrightarrow b}$|=(  )
A.$\sqrt{55}$B.9C.$\sqrt{91}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若tanθ=$\sqrt{2}$,那么tan2θ是(  )
A.-2$\sqrt{2}$B.2$\sqrt{2}$C.-$\frac{2}{3}\sqrt{2}$D.$\frac{2}{3}\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.抛物线y2=2px(p>0)的焦点为F,准线为L,A、B是抛物线上的两个动点,且满足∠AFB=$\frac{π}{3}$.设线段AB的中点M在L上的投影为N,则$\frac{|MN|}{|AB|}$的最大值是(  )
A.$\frac{2}{3}$B.1C.$\frac{3}{2}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.等差数列{an}的公差为2,若a2,a4,a8成等比数列,则{an}的前10项和S10=(  )
A.110B.99C.55D.45

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.用1,2,3,4这四个数字能组成24个没有重复数字的四位数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.命题“若a2<b,则-$\sqrt{b}$<a<$\sqrt{b}$”的逆否命题为(  )
A.若a2≥b,则a≥$\sqrt{b}$或a≤-$\sqrt{b}$B.若a2>b,则a>$\sqrt{b}$或a<-$\sqrt{b}$
C.若a≥$\sqrt{b}$或a≤-$\sqrt{b}$,则a2≥bD.若a>$\sqrt{b}$或a<-$\sqrt{b}$,则a2>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}{log_2}x,x>0\\{3^x},x≤0\end{array}$,则f(f($\frac{1}{8}$))=(  )
A.$\frac{1}{8}$B.$\frac{1}{16}$C.$\frac{1}{9}$D.$\frac{1}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{1}{2}$|1-2x|+|2x+1|
(Ⅰ)求函数f(x)的最小值m;
(Ⅱ)若正实数a,b满足$\frac{1}{a}$+$\frac{2}{b}$=m,且f(x)≤a+b对任意的正实数a,b恒成立,求x的取值范围.

查看答案和解析>>

同步练习册答案