ÒÔÏÂËĸöÃüÌâÖУº
¢Ù´ÓÔÈËÙ´«µÝµÄ²úÆ·Éú²úÁ÷Ë®ÏßÉÏ£¬ÖʼìԱÿ10·ÖÖÓ´ÓÖгéȡһ¼þ²úÆ·½øÐÐijÏîÖ¸±ê¼ì²â£¬ÕâÑùµÄ³éÑùÊÇ·Ö²ã³éÑù£»
¢ÚÁ½¸öËæ»ú±äÁ¿µÄÏßÐÔÏà¹ØÐÔԽǿ£¬ÔòÏà¹ØÏµÊýµÄ¾ø¶ÔÖµÔ½½Ó½üÓÚ1£»
¢ÛÔÚijÏî²âÁ¿ÖУ¬²âÁ¿½á¹û¦Î·þ´ÓÕý̬·Ö²¼N£¨1£¬¦Ò2£©£¨¦Ò£¾0£©£®Èô¦ÎÔÚ£¨0£¬1£©ÄÚȡֵµÄ¸ÅÂÊΪ0.4£¬Ôò¦ÎÔÚ£¨0£¬2£©ÄÚȡֵµÄ¸ÅÂÊΪ0.8£»
¢Ü¶Ô·ÖÀà±äÁ¿XÓëYµÄËæ»ú±äÁ¿K2µÄ¹Û²âÖµkÀ´Ëµ£¬kԽС£¬Åжϡ°XÓëYÓйØÏµ¡±µÄ°ÑÎճ̶ÈÔ½´ó£®
ÆäÖÐÕæÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©
A¡¢1B¡¢2C¡¢3D¡¢4
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺¼òÒ×Âß¼­
·ÖÎö£º°´ÕÕ·Ö²ã³éÑùµÄ¶¨ÒåÅжϢٵÄÕýÎó£»°´ÕÕÏßÐÔÏà¹ØÐÔÅжϢڵÄÕýÎó£»ÀûÓÃÕý̬·Ö²¼µÄ¹æÂÉÅжϢ۵ÄÕýÎó£»Í¨¹ýËæ»ú±äÁ¿K2µÄ¹Û²âÖµµÄ´óСÅжϢܵÄÕýÎó£»
½â´ð£º ½â£º¢Ù´ÓÔÈËÙ´«µÝµÄ²úÆ·Éú²úÁ÷Ë®ÏßÉÏ£¬ÖʼìԱÿ10·ÖÖÓ´ÓÖгéȡһ¼þ²úÆ·½øÐÐijÏîÖ¸±ê¼ì²â£¬ÕâÑùµÄ³éÑùÊÇ·Ö²ã³éÑù£»²»·ûºÏ·Ö²ã³éÑùµÄ¶¨Ò壬ÊÇϵͳ³éÑùµÄ×ö·¨£¬¡à¢Ù²»ÕýÈ·£»
¢ÚÁ½¸öËæ»ú±äÁ¿µÄÏßÐÔÏà¹ØÐÔԽǿ£¬ÔòÏà¹ØÏµÊýµÄ¾ø¶ÔÖµÔ½½Ó½üÓÚ1£»Âú×ãÏßÐÔÏà¹ØµÄ¶¨Ò壬ÕýÈ·£»
¢ÛÔÚijÏî²âÁ¿ÖУ¬²âÁ¿½á¹û¦Î·þ´ÓÕý̬·Ö²¼N£¨1£¬¦Ò2£©£¨¦Ò£¾0£©£®Èô¦ÎÔÚ£¨0£¬1£©ÄÚȡֵµÄ¸ÅÂÊΪ0.4£¬
Ôò¦ÎÔÚ£¨0£¬2£©ÄÚȡֵµÄ¸ÅÂÊΪ0.8£»²»·ûºÏÕý̬·Ö²¼µÄÌØµã£¬¡à¢Û²»ÕýÈ·£»
¢Ü¶Ô·ÖÀà±äÁ¿XÓëYµÄËæ»ú±äÁ¿K2µÄ¹Û²âÖµkÀ´Ëµ£¬kԽС£¬Åжϡ°XÓëYÓйØÏµ¡±µÄ°ÑÎճ̶ÈÔ½´ó£®
Âú×ãËæ»ú±äÁ¿K2µÄ¹Û²âÖµµÄÌØµã£¬¢ÜÕýÈ·£®
¹ÊÑ¡£ºB£®
µãÆÀ£º±¾Ì⿼²éϵͳÓë³éÑùµÄ¹ØÏµ£¬ÏßÐÔÏà¹ØÒÔ¼°Õý̬·Ö²¼µÄÓ¦Ó㬻ù±¾ÖªÊ¶µÄ¿¼²é£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É輯ºÏP={x|x=
n
4
+
1
2
£¬n¡ÊZ}£¬¼¯ºÏQ={x|x=
n
4
£¬n¡ÊZ}£¬PÓëQµÄ¹ØÏµÎª
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬¾ØÐÎAnBnCnDnµÄÒ»±ßAnBnÔÚxÖáÉÏ£¬ÁíÍâÁ½¸ö¶¥µãCnDnÔÚº¯Êýf£¨x£©=x+
1
x
£¨x£¾0£©µÄͼÏóÉÏ£®ÈôµãBnµÄ×ø±ê£¨n£¬0£©£¨n¡Ý2£¬n¡ÊN+£©£¬¼Ç¾ØÐÎAnBnCnDnµÄÖܳ¤Îªan£¬ÊýÁÐ{an}µÄǰm£¨m¡ÊN+£©ÏîºÍΪSm£¬Ôò
lim
n¡ú+¡Þ
Sm
a
2
n
=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ij¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬ÆäÖи©ÊÓͼΪÉÈÐΣ¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A¡¢
2¦Ð
3
B¡¢
¦Ð
3
C¡¢
2¦Ð
9
D¡¢
16¦Ð
9

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²
x2
16
+
y2
8
=1
£¬A¡¢B·Ö±ðÊÇÍÖÔ²µÄÓÒ¶¥µã¡¢É϶¥µã£¬MÊǵÚÒ»ÏóÏÞÄÚµÄÍÖÔ²ÉÏÈÎÒâÒ»µã£¬OÊÇ×ø±êÔ­µã£¬ÔòËıßÐÎOAMBµÄÃæ»ýµÄ×î´óֵΪ£¨¡¡¡¡£©
A¡¢8
B¡¢8
2
C¡¢12
D¡¢16

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸´Êý£¨
1
2
+
3
2
i£©2µÄ¹²éÊýÊÇ£¨¡¡¡¡£©
A¡¢-
1
2
+
3
2
i
B¡¢
1
2
-
3
2
i
C¡¢
1
2
+
3
2
i
D¡¢-
1
2
-
3
2
i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ò»¸ö¶àÃæÌåµÄÖ±¹Ûͼ¡¢Ö÷ÊÓͼ¡¢×óÊÓͼ¡¢¸©ÊÓͼÈçͼ£¬M¡¢N·Ö±ðΪA1B¡¢B1C1µÄÖе㣮ÏÂÁнáÂÛÖÐÕýÈ·µÄ¸öÊýÓУ¨¡¡¡¡£©
¢ÙÖ±ÏßMNÓëA1CÏཻ£®
¢ÚMN¡ÍBC£®
¢ÛMN¡ÎÆ½ÃæACC1A1£®
¢ÜÈýÀâ×¶N-A1BCµÄÌå»ýΪVN-A1BC=
1
6
a3
£®
A¡¢4¸öB¡¢3¸öC¡¢2¸öD¡¢1¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ÖУ¬a1=1£¬a2=2£¬an+2=
2
3
an+1+
1
3
an
£¬Çóan£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=log 
1
2
(ax2+2x+a-1)
µÄÖµÓòÊÇ[0£¬+¡Þ£©£¬ÇóʵÊýaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸