精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=($\frac{1}{2}$a-$\sqrt{3}$)sinx+($\frac{\sqrt{3}}{2}$a+1)cosx,将f(x)的图象向右平移$\frac{π}{3}$个单位长度得到函数g(x)的图象,若对任意x∈R,都有g(x)≤g($\frac{π}{4}$),则a的值为2.

分析 首先化简三角函数式,然后由图象的平移得到g(x)解析式,根据对任意x∈R,都有g(x)≤g($\frac{π}{4}$),得到关于a 的等式解之.

解答 解:f(x)=($\frac{1}{2}$a-$\sqrt{3}$)sinx+($\frac{\sqrt{3}}{2}$a+1)cosx=asin(x+$\frac{π}{3}$)-2sin(x-$\frac{π}{6}$),将f(x)的图象向右平移$\frac{π}{3}$个单位长度得到函数g(x)=asinx-2sin(x-$\frac{π}{2}$)=asinx+2cosx,
因为对任意x∈R,都有g(x)≤g($\frac{π}{4}$),所以$\sqrt{{a}^{2}+4}=\frac{\sqrt{2}}{2}a+\sqrt{2}$,解得a=2;
故答案为:2.

点评 本题考查了三角函数式的化简以及图象变换;由对任意x∈R,都有g(x)≤g($\frac{π}{4}$),得到关于a 的等式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=-1,b1=1,a2+b2=2.
(1)若a3+b3=5,求{bn}的通项公式;
(2)若T3=21,求S3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知a∈R,i为虚数单位,若$\frac{a-i}{2+i}$为实数,则a的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知奇函数f(x)在R上是增函数.若a=-f(${log_2}\frac{1}{5}$),b=f(log24.1),c=f(20.8),则a,b,c的大小关系为(  )
A.a<b<cB.b<a<cC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设a,b∈R,|a|≤1.已知函数f(x)=x3-6x2-3a(a-4)x+b,g(x)=exf(x).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)已知函数y=g(x)和y=ex的图象在公共点(x0,y0)处有相同的切线,
(i)求证:f(x)在x=x0处的导数等于0;
(ii)若关于x的不等式g(x)≤ex在区间[x0-1,x0+1]上恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.f(x)=xcosx,f(x)=cos(2π-x)-x3sinx的奇偶性分别为奇函数;偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若f(x)=$\left\{\begin{array}{l}{{e}^{x-2},x≤2}\\{ln(x-1),x>2}\end{array}\right.$,则f[f(4)]=$\frac{3}{{e}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x+$\frac{λ}{e^x}$.
(Ⅰ)当λ>0时,求证:f(x)≥(1-λ)x+λ,并指出等号成立的条件;
(Ⅱ)求证:对任意实数λ,总存在实数x∈[-3,3],有f(x)>λ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知球的半径为10cm,若它的一个截面圆的面积是36πcm2,则球心与截面圆周的圆心的距离是8cm.

查看答案和解析>>

同步练习册答案