精英家教网 > 高中数学 > 题目详情
求证:方程x3-3x+1=0的根一个在(-2,-1)内,一个在(0,1)内,一个在(1,2)内.
考点:函数的零点与方程根的关系
专题:函数的性质及应用
分析:根据函数零点与方程根的关系,即可得到结论.
解答: 解:设f(x)=x3-3x+1,易知函数f(x)=x3-3x+1的图象是连续不断的. 
且,f(-2)=-8+6+1=-1<0,f(-1)=-1+3+1=3>0.
∴f(x)在(-2,-1)内有一个零点.
即方程x3-3x+1=0,在(-2,-1)有一个根,
同理f(0)=1>0,f(1)=-1<0,f(2)=3>0.
∴方程x3-3x+1=0的一个根在(0,1)内,一个根在(1,2)内.
点评:本题主要考查方程根的分布,利用方程根和函数零点之间的关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx+
π
6
),ω∈R,且ω≠0.
(Ⅰ)若f(x)的图象经过点(
π
6
,2),且0<ω<3,求ω的值;
(Ⅱ)在(Ⅰ)的条件下,若函数g(x)=mf(x)+n(m>0),当x∈[0,
π
2
]时,g(x)的值域为[-5,1],求m,n的值;
(Ⅲ)若函数h(x)=f(x-
π
)在[-
π
3
π
3
]上是减函数,求ω的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(n)=1+
1
2
+
1
3
+…+
1
n
(n∈N),是否存在关于正整数的函数g(n),使等式f(1)+f(2)+…+f(n-1)=g(n)•[f(n)-1]对于n≥2的一切自然数都成立?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,an+1=an+c(c为常数,n∈N*),a1,a2,a5构成公比不等于1的等比数列.记bn=
1
anan+1
(n∈N*).
(Ⅰ)求c的值;
(Ⅱ)设{bn}的前n项和为Rn,是否存在正整数k,使得Rk≥2k成立?若存在,找出一个正整数k;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,侧棱PA⊥平面ABCD,AB=
3
,BC=1,PA=2.
(1)M是AB上一点,且AM=
3
3
,F是PC上一点,则当
PF
FC
为何值时,BF∥平面PDM?
(2)E为PD的中点,在侧面PAB内找一点N,使NE⊥平面PAC,并求NE与平面PAD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科)如图,在长方体ABCD-A1B1C1D1中,AD=AA1=2,AB=4,E为AB的中点.分别以DA、DC、DD1所在直线为x轴、y轴、z轴建立空间直角坐标系D-xyz.
(Ⅰ)求点E、B1的坐标;
(Ⅱ)求证:D1E⊥CE.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三内角A、B、C的对边分别是a、b、c,其中c=10,
sin(A-B)
sin(A+B)
=
a2-b2
a2+b2
=-
7
25

(1)判断△ABC的形状;
(2)若△ABC外接圆为⊙O,点P位于劣弧
AC
上,∠APB=60°,求四边形ABCP的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算(Ⅰ)(2
7
9
)
1
2
+0.5-2-3×π0+(
8
27
)-
2
3

(Ⅱ)log3
27
+lg25+lg4+7log72+{(-9.8)0

查看答案和解析>>

科目:高中数学 来源: 题型:

点A(2,-3)到直线3x+4y-4=0的距离是
 

查看答案和解析>>

同步练习册答案