2£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©ÖУ¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ=4cos¦È£®
£¨I£©Ð´³öÖ±ÏßlµÄÆÕͨ·½³ÌºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨II£©ÉèÖ±ÏßlÓëÇúÏßCÏཻÓÚP£¬QÁ½µã£¬Çó|PQ|µÄÖµ£®

·ÖÎö £¨I£©Ö±ÏßlµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊýt£¬ÄÜÇó³öÖ±ÏßlµÄÆÕͨ·½³Ì£»ÇúÏßCµÄ¼«×ø±ê·½³Ìת»¯Îª¦Ñ2=4¦Ñcos¦È£¬ÓÉ´ËÄÜÇó³öÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£®
£¨II£©½«$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$´úÈ루x-2£©2+y2=4£¬µÃ${t^2}-3\sqrt{3}t+5=0$£¬ÓÉ´ËÄÜÇó³ö|PQ|£®

½â´ð ½â£º£¨I£©¡ßÖ±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬
¡àÏûÈ¥²ÎÊýtµÃÖ±ÏßlµÄÆÕͨ·½³Ì£º$x-\sqrt{3}y+1=0$
¡ßÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ=4cos¦È£¬¡à¦Ñ2=4¦Ñcos¦È£¬
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£º£¨x-2£©2+y2=4¡­£¨5·Ö£©
£¨II£©½«$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$´úÈ루x-2£©2+y2=4£¬
µÃ${t^2}-3\sqrt{3}t+5=0$£¬
ÉèP£¬QÁ½µãµÄ²ÎÊý·Ö±ðΪt1£¬t2£¬Ôò${t_1}+{t_2}=3\sqrt{3}$£¬t1•t2=5£¬
¡à$|{PQ}|=|{{t_1}-{t_2}}|=\sqrt{{{£¨{{t_1}+{t_2}}£©}^2}-4{t_1}{t_2}}=\sqrt{7}$¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²éÖ±ÏߵįÕͨ·½³ÌºÍÇúÏßµÄÖ±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÏÒ³¤µÄÇ󷨣¬¿¼²é²ÎÊý·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢¼«×ø±ê·½³ÌµÄ»¥»¯µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÎÒ½¢ÔڵеºAÄÏÆ«Î÷50¡ã¾àÀëAµº12º£ÀïµÄB´¦£¬·¢Ïֵн¢ÕýÓÉAµºÑر±Æ«Î÷10¡ãµÄ·½ÏòÒÔ10º£Àï/СʱµÄËٶȺ½ÐУ¬ÈôÎÒ½¢ÒªÓÃ2Сʱ׷Éϵн¢£¬ÔòÎÒ½¢µÄËÙ¶È´óСΪ14£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-\frac{1}{2}+\frac{\sqrt{2}}{2}t}\\{y=\frac{1}{2}+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¬ÍÖÔ²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦È}\\{y=\sqrt{3}sin¦È}\end{array}\right.$£®ÔÚÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢µÄ¼«×ø±êϵÖУ¬µãAµÄ×ø±êΪ£¨$\frac{\sqrt{2}}{2}$£¬$\frac{3}{4}$¦Ð£©£®
£¨1£©½«µãAµÄ×ø±ê»¯ÎªÖ±½Ç×ø±êϵϵÄ×ø±ê£¬ÍÖÔ²µÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£»
£¨2£©Ö±ÏßlÓëÍÖÔ²C½»ÓÚP¡¢QÁ½µã£¬Çó|AP|•|AQ|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=£¨$\frac{1}{2}$x+a£©£¨x-$\sqrt{3}$£©ÎªÅ¼º¯Êý£¬Ôòf£¨3£©=3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ËĸöÈËÎ§×øÔÚÒ»ÕÅÔ²×ÀÅÔ£¬Ã¿¸öÈËÃæÇ°·Å×ÅÍêÈ«ÏàͬµÄÓ²±Ò£¬ËùÓÐÈËͬʱ·­×ª×Ô¼ºµÄÓ²±Ò£®ÈôÓ²±ÒÕýÃæ³¯ÉÏ£¬ÔòÕâ¸öÈËÕ¾ÆðÀ´£» ÈôÓ²±ÒÕýÃæ³¯Ï£¬ÔòÕâ¸öÈ˼ÌÐø×ø×Å£®ÄÇô£¬Ã»ÓÐÏàÁÚµÄÁ½¸öÈËÕ¾ÆðÀ´µÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{5}{16}$C£®$\frac{7}{16}$D£®$\frac{11}{16}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÔÚÒÑÖªÈýÀâ×¶P-ABCÖУ¬PA=4£¬AB=AC=2$\sqrt{3}$£¬BC=6£¬PA¡ÍÃæABC£¬Ôò´ËÈýÀâ×¶µÄÍâ½ÓÇòµÄ±íÃæ»ýΪ64¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÔÚ¿Õ¼äÖУ¬¸ø³öÏÂÁÐËĸöÃüÌ⣺
¢ÙƽÐÐÓÚͬһֱÏßµÄÁ½ÌõÖ±Ï߯½ÐУ»   ¢ÚƽÐÐÓÚÍ¬Ò»Æ½ÃæµÄÁ½ÌõÖ±Ï߯½ÐУ»
¢Û´¹Ö±ÓÚͬһֱÏßµÄÁ½ÌõÖ±Ï߯½ÐУ»   ¢Ü´¹Ö±ÓÚÍ¬Ò»Æ½ÃæµÄÁ½¸öÆ½ÃæÆ½ÐУ®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅ£¨¡¡¡¡£©
A£®¢ÙB£®¢ÚC£®¢ÛD£®¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖª¡÷ABCµÄÈý¸öÄÚ½ÇA£¬B£¬CËù¶ÔÓ¦µÄ±ß·Ö±ðΪa£¬b£¬c£¬ÇÒÂú×ãasinB=$\sqrt{3}$bcosA£®
£¨1£©ÇóAµÄ´óС£»
£¨2£©Èôa=7£¬b=5£¬Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÈôµãM£¨a£¬b£©ÔÚº¯Êýy=-x2+3lnxµÄͼÏóÉÏ£¬µãN£¨c£¬d£©ÔÚº¯Êýy=x-2µÄͼÏóÉÏ£¬Ôò$\sqrt{£¨a+c£©^{2}+£¨b+d£©^{2}}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®2C£®2$\sqrt{2}$D£®3$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸