精英家教网 > 高中数学 > 题目详情
已知不等式ax2+(a-1)x+a-1<0对于所有的实数x都成立,求a的取值范围.
考点:函数恒成立问题
专题:不等式的解法及应用
分析:分a=0和a≠0讨论,当a≠0时需a<0,且对应二次方程的判别式小于0,联立不等式求解a的取值范围.
解答: 解:当a=0时,原不等式ax2+(a-1)x+a-1<0可化为-x-1<0,即x>-1.
不满足题意;
当a≠0时,要使不等式ax2+(a-1)x+a-1<0对于所有的实数x都成立,
a<0
(a-1)2-4a(a-1)<0
,即
a<0
3a2-2a-1>0

解得:a<-
1
3

综上,使不等式ax2+(a-1)x+a-1<0对于所有的实数x都成立的a的取值范围是(-∞,-
1
3
).
点评:本题考查了恒成立问题,考查分类讨论的数学思想方法,训练了“三个二次”结合求解含参数的范围问题,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,E是AB的中点
(Ⅰ)在B1C上是否存在点P,使PB∥平面B1ED,若存在,求出点P的位置,若不存在,请说明理由;
(Ⅱ)求二面角D-B1E-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:三棱柱A1B1C1-ABC,A1A⊥AC,A1A⊥AB,AB=AC=1,A1B=2,E是A1B的中点.
(Ⅰ)若BC=
2
,求证:平面ACE⊥平面A1AB;
(Ⅱ)若∠CAB=120°,求二面角A1-AE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,底面ABC是边长为2的正三角形,侧棱长为2,且侧棱AA1⊥底面ABC,点D是BC的中点
(1)求证:AD⊥C1D;
(2)求直线AC与平面ADC1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-2|+2|x-a|(a∈R).
(Ⅰ)当a=1时,解不等式f(x)>3;
(Ⅱ)不等式f(x)≥1在区间(-∞,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x),若存在常数m>0,使|f(x)|≤m|x|对一切定义域内x均成立,则称f(x)为F函数.给出下列函数:
①f(x)=0;②f(x)=2x;③f(x)=x2-3x+1,x≥2; ④f(x)=
x
x2+x+1

你认为上述四个函数中,哪几个是F函数,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

直三棱柱ABC-A1B1C1中,AB⊥AC,AB=AC=1,AA1=
2
,D为BC中点.
(Ⅰ)求证:AD⊥平面BC1
(Ⅱ)求证:A1B∥平面AC1D;
(Ⅲ)求二面角D-AC1-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,点C为半圆的直径AB延长线上一点,AB=BC=2,过动点P作半圆的切线PQ,若PC=
3
PQ
,则△PAC的面积的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一动圆P与圆O1:x2+y2=1和圆O2:x2+y2-8x+7=0均内切,则动圆P圆心的轨迹是
 

查看答案和解析>>

同步练习册答案