精英家教网 > 高中数学 > 题目详情
10.在△ABC中,已知a=40,b=20$\sqrt{2}$,A=45°,则角B等于(  )
A.60°B.60°或120°C.30°D.30°或150°

分析 由正弦定理可得sinB=$\frac{bsinA}{a}$=$\frac{1}{2}$,由于a=40>b=20$\sqrt{2}$,可得范围0<B<45°,从而可求B的值.

解答 解:由正弦定理可得:sinB=$\frac{bsinA}{a}$=$\frac{20\sqrt{2}×sin45°}{40}$=$\frac{1}{2}$.
由于a=40>b=20$\sqrt{2}$,可得0<B<45°,
可得:B=30°,
故选:C.

点评 本题主要考查了正弦定理,大边对大角等知识的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.下面4个结论中,正确结论的个数是(  )
①若数列{an}是等差数列,且am+an=as+at(m,n,s,t∈N*),则m+n=s+t;
②若Sn是等差数列{an}的前n项的和,则Sn,S2n-Sn,S3n-S2n成等差数列;
③若Sn是等比数列{an}的前n项的和,则Sn,S2n-Sn,S3n-S2n成等比数列;
④若Sn是等比数列{an}的前n项的和,且Sn=Aqn+B;(其中A、B是非零常数,n∈N*),则A+B为零.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.有一个角为60°的钝角三角形,满足最大边与最小边之比为m,则m的取值范围为(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为了庆祝5月18日“世界博物馆日”,重庆白鹤梁水下博物馆对外宣传组需要张贴海报进行宣传,现让你设计一张如图所示的横向张贴的海报,要求版心(图中的阴影部分)面积为162dm2,上、下两边各空1dm,左、右两边各空2dm,如何设计版心的尺寸,才能使四周空白面积最小?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=x3+bx2+cx+d的图象如图所示,则函数g(x)=log2(x2+$\frac{2b}{3}$+$\frac{c}{3}$)的单调递减区间是(  )
A.($\frac{1}{2}$,+∞)B.(-∞,$\frac{1}{2}$)C.(-2,3)D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}中,${a_1}=1,{a_{n+1}}=\frac{a_n}{{{a_n}+1}}$如果${b_n}=\frac{a_n}{n+2}$,则数列{bn}的前n项和为$\frac{3}{4}$-$\frac{2n+3}{2({n}^{2}+3n+2)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设正项数列{an}的前n项和是Sn,若{an}和{$\sqrt{{S}_{n}}$}都是等差数列,{an}的公差为d,数列{$\sqrt{{S}_{n}}$}的公差为$\frac{d}{8}$,则a1+d=48.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知三角形ABC中,点A,B的坐标分别为A(3,0),B(0,3),若点C(1,t),∠B是钝角,则t的取值范围为t>4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=-$\frac{1}{2}$x2+x,是否存在实数m,n(m<n),使得当x∈[m,n]时,函数的值域为[2m,2n],若存在,求出m,n的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案