精英家教网 > 高中数学 > 题目详情
7.已知数列{an}的前n项和为Sn,若4Sn=(2n-1)an+1+1,a1=1.
(1)求数列{an}的通项公式;
(2)令${b_n}=\frac{n+1}{{{{(n+2)}^2}{{({a_n}+1)}^2}}}$,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有${T_n}<\frac{5}{64}$.

分析 (1)由题意可知:当n≥2时,4Sn-1=(2n-1)an+1,4Sn=(2n-1)an+1+1,两式相减,整理得:$\frac{{{a_{n+1}}}}{a_n}=\frac{2n+1}{2n-1}(n≥2)$,采用累乘法,即可求得an=2n-1,当n=1时,a1=1成立,即可求得数列{an}的通项公式;
(2)由(1)可知:${b_n}=\frac{n+1}{{4{n^2}{{(n+2)}^2}}}=\frac{1}{16}[{\frac{1}{n^2}-\frac{1}{{{{(n+2)}^2}}}}]$,采用“裂项法”即可求得Tn=$\frac{1}{16}[{1+\frac{1}{2^2}-\frac{1}{{{{(n+1)}^2}}}-\frac{1}{{{{(n+2)}^2}}}}]$.由n∈N*,则${T_n}<\frac{1}{16}(1+\frac{1}{2^2})=\frac{5}{64}$.

解答 解:(1)由4Sn=(2n-1)an+1+1,a1=1.
当n=1,解得:a2=3,…(1分)
∵4Sn=(2n-1)an+1+1,
∴当n≥2时,4Sn-1=(2n-1)an+1,…(2分)
两式相减,得:4an=(2n-1)an+1-(2n-3)an(n≥2),整理得:$\frac{{{a_{n+1}}}}{a_n}=\frac{2n+1}{2n-1}(n≥2)$,…(3分)
采用累乘法:则${a_n}=\frac{a_n}{{{a_{n-1}}}}•\frac{{{a_{n-1}}}}{{{a_{n-2}}}}•\frac{{{a_{n-2}}}}{{{a_{n-3}}}}…\frac{a_3}{a_2}•\frac{a_2}{a_1}•{a_1}=\frac{2n-1}{2n-3}•\frac{2n-3}{2n-5}•\frac{2n-5}{2n-7}•…•\frac{5}{3}•\frac{3}{1}•1=2n-1$,
∴an=2n-1,
当n=1时,a1=1成立,
数列{an}的通项公式an=2n-1;…(6分)
(2)证明:由an=2n-1,得${b_n}=\frac{n+1}{{4{n^2}{{(n+2)}^2}}}=\frac{1}{16}[{\frac{1}{n^2}-\frac{1}{{{{(n+2)}^2}}}}]$.…(9分)
${T_n}=\frac{1}{16}[{1-\frac{1}{3^2}+\frac{1}{2^2}-\frac{1}{4^2}+\frac{1}{3^2}-\frac{1}{5^2}+…+\frac{1}{{{{(n-1)}^2}}}-\frac{1}{{{{(n+1)}^2}}}+\frac{1}{n^2}-\frac{1}{{{{(n+2)}^2}}}}]$,
=$\frac{1}{16}[{1+\frac{1}{2^2}-\frac{1}{{{{(n+1)}^2}}}-\frac{1}{{{{(n+2)}^2}}}}]$. …(11分)
∴${T_n}<\frac{1}{16}(1+\frac{1}{2^2})=\frac{5}{64}$,
∴对于任意的n∈N*,${T_n}<\frac{5}{64}$.…(12分)

点评 本题考查数列的通项公式的求法,考查“累乘法”求数列的通项公式及“裂项法”求数列的前n项和,考查数列与不等式的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知a>0,函数f(x)=ax2-2ax+2lnx,g(x)=f(x)-2x.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)讨论g(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.a,b,c表示直线,M表示平面,给出下列四个命题:
①若a∥M,b∥M,则a∥b;
②若b?M,a∥b,则a∥M;
③若a⊥c,b⊥c,则a∥b;
④若a⊥M,b⊥M,则a∥b.
其中正确的命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数$y=\frac{(2-x){e}^{x}}{(x-1)^{2}}$的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知两定点A(-1,0)和B(1,0),动点P(x,y)在直线l:y=x+3上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{10}}{5}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{2\sqrt{10}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.不等式$\frac{10-x}{x-1}$>2的解集为(1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知圆C的面积被直线y=x平分,且圆C过点(2,0),则该圆面积最小时的圆方程为(x-1)2+(y-1)2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=xlnx-a(x-1)2-x+1,a∈R.
(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若对任意x∈(1,+∞),f(x)<0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合P={0,x},Q={lnx,2},P∩Q={0},则P∪Q为(  )
A.{0,2}B.{0,1,2}C.{1,2}D.{0,1}

查看答案和解析>>

同步练习册答案